VACON® 100 приводы переменного тока

РУКОВОДСТВО ПО МОНТАЖУ НАСТЕННЫЕ ПРИВОДЫ

BBEДЕНИE VACON⋅3

ВВЕДЕНИЕ

Номер документа: DPD01049E1

Дата: 1.4.2015

об этом руководстве

Vacon Plc обладает авторскими правами на это руководство. Все права защищены.

ОГЛАВЛЕНИЕ VACON · 5

ОГЛАВЛЕНИЕ

DE	зедени			0
			одстве	
1	Серти	іфикация	1	8
2	Безог			
	2.1		іх обеспечения безопасности в данном руководстве	
			щие символы	
	2.2		реждение	
	2.3		кно	
	2.4		ение и защита от замыкания на землю	
	2.5	•	рмагнитная совместимость (ЭМС)	
	2.6		зование устройства RCD или RCM	
3	_		зара	
	3.1		очная этикетка	
	3.2		значения типа	
	3.3		овка и подъем привода переменного тока	
		3.3.1	Масса привода переменного тока	
	2 /	3.3.2	Подъем приводов типоразмеров MR8 и MR9	
	3.4	дополн 3.4.1	ительные принадлежностиТипоразмер MR4	
		3.4.1	Типоразмер MR5	
		3.4.3	Типоразмер МК6	
		3.4.4	Типоразмер MR7	
		3.4.5	Типоразмер MR8	
		3.4.6	Типоразмер MR9	
	3.5		a «Product modified»	
	3.6		ация	
4	Монт			
•	4.1		информация о монтаже	
	4.2		ы для настенного монтажа	
		4.2.1	Настенный монтаж привода MR4	
		4.2.2	Настенный монтаж привода MR5	
		4.2.3	настенный монтаж привода MR6	
		4.2.4	Настенный монтаж привода MR7	
		4.2.5	Настенный монтаж привода MR8, IP21 и IP54	
		4.2.6	Настенный монтаж привода MR8, IP00	
		4.2.7	Настенный монтаж привода MR9, IP21 и IP54	
		4.2.8	Настенный монтаж привода MR9, IP00	31

VACON · 6 OГЛАВЛЕНИЕ

	4.3	Размеры для монтажа с использованием фланцевого крепления	
		4.3.1 Монтаж MR4 с использованием фланца	. 35
		4.3.2 Монтаж MR5 с использованием фланца	. 36
		4.3.3 Монтаж MR6 с использованием фланца	
		4.3.4 Монтаж MR7 с использованием фланца	
		4.3.5 Монтаж MR8 с использованием фланца	. 39
		4.3.6 Монтаж MR9 с использованием фланца	. 40
	4.4	Охлаждение	. 41
5	Соеді	инения кабелей питания	. 44
	5.1	Подсоединение кабелей	. 44
	5.2	Стандарты UL на монтаж кабелей	. 45
	5.3	Определение параметров и выбор кабелей	. 45
		5.3.1 Сечения кабелей и данные предохранителей	. 46
		5.3.2 Сечения кабелей и данные предохранителей, Северная Америка .	
	5.4	Кабели тормозного резистора	
	5.5	Подготовка к установке кабеля	
	5.6	Монтаж кабелей	
		5.6.1 Типоразмеры MR4-MR7	
		5.6.2 Типоразмеры MR8-MR9	
	5.7	Монтаж в сети электроснабжения с заземлением фазы	. 72
6	Блок	управления	
	6.1	Компоненты блока управления	
	6.2	Кабели блока управления	
		6.2.1 Выбор кабелей управления	
		6.2.2 Клеммы управления и DIP-переключатели	
	6.3	Подключение шины Fieldbus	
		6.3.1 Подключение к шине fieldbus с использованием кабеля Ethernet	
		6.3.2 Подключение к шине fieldbus с использованием кабеля RS485	
	6.4	Установка дополнительных плат	
		6.4.1 Процедура установки	
	6.5	Установка батареи для часов реального времени (RTC)	
	6.6	Барьеры с гальваническим разделением	. 90
7	Ввод	в эксплуатацию и дополнительные инструкции	. 92
	7.1	Техника безопасности при вводе в эксплуатацию	
	7.2	Ввод привода в эксплуатацию	
	7.3	Управление работой двигателя	
		7.3.1 Проверки, выполняемые перед запуском двигателя	
	7.4	Измерение изоляции кабеля и двигателя	
	7.5	Монтаж в системе типа IT	
		7.5.1 Перемычка ЭМС в MR4, MR5 и MR6	
		7.5.2 Типоразмеры MR7 и MR8	
		7.5.3 Типоразмер MR9	
	7.6	Техническое обслуживание	101

ОГЛАВЛЕНИЕ VACON · 7

8	Техні	ические характеристики, Vacon® 100	103
	8.1	Номинальные значения мощности привода переменного тока	
		8.1.1 Напряжение электросети 208–240 В	
		8.1.2 Напряжение электросети 380-500 В	
		8.1.3 Перегрузочная способность	
		8.1.4 Номинальные значения тормозных резисторов	
	8.2	Vacon® 100 — технические характеристики	
9	Техні	ические характеристики, Vacon® 100 FLOW	115
	9.1	Номинальные значения мощности привода переменного тока	
		9.1.1 Напряжение электросети 208–240 В	
		9.1.2 Напряжение электросети 380-500 B	
		9.1.3 Перегрузочная способность	
	9.2	Vacon® 100 FLOW — технические характеристики	
10	Техні	ические характеристики Vacon® 100 HVAC	123
	10.1	Номинальные значения мощности привода переменного тока	123
		10.1.1 Напряжение электросети 208–240 В	
		10.1.2 Напряжение электросети 380-500 B	
		10.1.3 Перегрузочная способность	
	10.2	Vacon® 100 HVAC — технические характеристики	
11	Техні	ические данные цепей управления	131
	11.1		

VACON · 8 CEPTИΦИΚΑЦИЯ

1 СЕРТИФИКАЦИЯ

Ниже перечислены сертификаты, выданные для данного продукта Vacon.

- 1. Заявление о соответствии нормативам ЕС
 - См. Заявление о соответствии нормативам ЕС на следующей странице.
- 2. Сертификат UL
 - Регистрационный номер сертификата cULus E171278.
- 3. Сертификат C-tick
 - Регистрационный номер сертификата C-tick N16307.

СЕРТИФИКАЦИЯ VACON · 9

ЗАЯВЛЕНИЕ О СООТВЕТСТВИИ НОРМАТИВАМ ЕС

Настоящим компания

Наименование

 изготовителя:
 Vacon Oyj

 Адрес изготовителя:
 P.O. Box 25

Runsorintie 7 FIN-65381 Vaasa

Finland

заявляет, что изделие:

Наименование изделия: Преобразователь частоты Vacon 100

Обозначение модели: Настенные приводы:

Vacon 0100 3L 0003 5...0310 5 Vacon 0100 3L 0003 4...0310 4 Vacon 0100 3L 0003 2...0310 2

разработано и произведено в соответствии с приведенными ниже стандартами:

Безопасность: EN 61800-5-1: 2007

EN 60204-1: 2009

(в зависимости от применимости)

ЭМС: EN 61800-3: 2004 + A1: 2012

EN 61000-3-12

и отвечает требованиям соответствующих положений по безопасности, содержащихся в Директиве по низковольтному оборудованию 2006/95/ЕС и в Директиве по ЭМС 2004/108/ЕС.

Организация производства и контроль качества позволяют утверждать, что это изделие удовлетворяет требованиям Директивы и действующих стандартов.

Вааса, 07 января 2015 г.

Веса Лайси (Vesa Laisi)

Президент

Год присвоения маркировки ЕС: 2009

VACON · 10 БЕЗОПАСНОСТЬ

2 БЕЗОПАСНОСТЬ

2.1 В ЦЕЛЯХ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ В ДАННОМ РУКОВОДСТВЕ ИСПОЛЬЗУЮТСЯ СЛЕДУЮЩИЕ СИМВОЛЫ.

В этом руководстве представлены предупреждения и предостережения, отмеченные следующими символами. В предупреждениях и предостережениях содержится важная информация относительно способов предотвращения повреждений оборудования или системы.

Внимательно ознакомьтесь с предостережениями и предупреждениями и соблюдайте соответствующие инструкции.

Табл. 1: Символы, относящиеся к технике безопасности

Символ	Описание
A	ПРЕДУПРЕЖДЕНИЕ!
	осторожно!
	ГОРЯЧАЯ ПОВЕРХ- НОСТЬ!

2.2 ПРЕДУПРЕЖДЕНИЕ.

ПРЕДУПРЕЖДЕНИЕ!

Когда привод подключен к сети электроснабжения, запрещается прикасаться к компонентам блока питания. На подключенном к сети электроснабжения приводе эти компоненты находятся под напряжением. Это напряжение может быть очень опасным для человека.

ΘE30ΠACHOCTЬ VACON · 11

ПРЕДУПРЕЖДЕНИЕ!

Не прикасайтесь к клеммам кабеля двигателя U, V, W, а также к клеммам тормозного резистора и клеммам, на которые выводится напряжение постоянного тока, если привод подключен к сети электроснабжения. Если привод подключен к сети электроснабжения, эти клеммы находятся под напряжением, даже если двигатель не работает.

ПРЕДУПРЕЖДЕНИЕ!

Запрещается прикасаться к релейным выходам или к клеммам управления привода. На них может присутствовать опасное напряжение, даже если привод отключен от сети электроснабжения.

ПРЕДУПРЕЖДЕНИЕ!

Перед выполнением электротехнических работ убедитесь в том, что на компонентах привода отсутствует напряжение.

ПРЕДУПРЕЖДЕНИЕ!

Прежде чем начинать работу с клеммами, отключите привод от сети электроснабжения и убедитесь в том, что двигатель остановился. Подождите 5 минут, прежде чем открывать крышку привода. Затем с помощью измерительного прибора убедитесь в отсутствии напряжения. Клеммы и компоненты привода остаются под напряжением в течение 5 минут после отключения от сети электроснабжения и остановки двигателя.

ПРЕДУПРЕЖДЕНИЕ!

Перед подключением привода к сети электроснабжения убедитесь в том, что передняя крышка и крышка кабельного отсека привода закрыты. Если привод подключен к сети электроснабжения, на клеммах преобразователя частоты будет присутствовать напряжение.

ПРЕДУПРЕЖДЕНИЕ!

Если непреднамеренный запуск двигателя может повлечь за собой риски, отключите двигатель от привода. При включении питания, а также при сбросе тормоза или отказа двигатель будет немедленно запускаться, если включен сигнал пуска, при условии что импульсное управление не было выбрано для логики пуска/останова. При внесении изменений в параметры, приложения или программное обеспечение могут также измениться функции входов/выходов (включая пусковые входы).

ПРЕДУПРЕЖДЕНИЕ!

Для монтажа, прокладки кабелей или техобслуживания рекомендуется надевать защитные перчатки, так как об острые края корпуса преобразователя частоты можно порезаться.

VACON · 12 FE30ПACHOCTЬ

2.3 ОСТОРОЖНО

осторожно!

Не перемещайте привод переменного тока. Во избежание повреждения привода он должен быть зафиксирован стационарно.

осторожно!

Не производите измерения, когда привод переменного тока подключен к сети электроснабжения. Это может привести к повреждению привода.

осторожно!

Убедитесь в наличии усиленного защитного заземления. Такое заземление является обязательным, поскольку ток прикосновения приводов переменного тока превышает 3,5 мА переменного тока (см. EN 61800-5-1). См. главу 2.4 Заземление и защита от замыкания на землю.

осторожно!

Используйте только оригинальные запасные части. Использование неоригинальных запасных частей может привести к повреждению привода.

осторожно!

Не прикасайтесь к компонентам на печатных платах. Статическое напряжение может привести к повреждению этих компонентов.

осторожно!

Убедитесь в том, что уровень электромагнитных помех привода переменного тока соответствует параметрам используемой сети электроснабжения. См. главу 2.4 Заземление и защита от замыкания на землю. Несоответствующий уровень электромагнитных помех может привести к повреждению привода.

осторожно!

Избегайте радиопомех. В бытовой среде привод переменного тока может вызывать радиопомехи.

ПРИМЕЧАНИЕ!

Двигатель автоматически запускается после автоматического сброса отказа, если включена функция автоматического сброса. См. руководство по применению.

ПРИМЕЧАНИЕ!

Если привод переменного тока используется в качестве составной электроустановки, то изготовитель установки должен снабдить ее выключателем сетевого питания (см. EN 60204-1).

ΘE30ΠACHOCTЬ VACON ⋅ 13

2.4 ЗАЗЕМЛЕНИЕ И ЗАЩИТА ОТ ЗАМЫКАНИЯ НА ЗЕМЛЮ

осторожно!

Привод переменного тока должен быть обязательно заземлен с помощью провода заземления, подключенного к клемме заземления, обозначенной символом

Отсутствие провода заземления может привести к повреждению привода.

Ток прикосновения приводов переменного тока превышает 3,5 мА переменного тока. В соответствии с требованиями стандарта EN 61800-5-1 цепь защиты должна удовлетворять по меньшей мере одному из следующих условий:

должно использоваться фиксированное подключение;

- а) провод защитного заземления должен иметь поперечное сечение не менее 10 мм² (медный) или 16 мм² (алюминиевый); ИЛИ
- b) должно быть предусмотрено автоматическое отключение сетевого питания при нарушении целостности провода защитного заземления. См. главу *5 Соединения кабелей питания*. ИЛИ
- с) Должна быть предусмотрена дополнительная клемма для второго провода защитного заземления того же поперечного сечения, что и первый провод защитного заземления.

Табл. 2: Площадь сечения провода защитного заземления

Площадь поперечного сечения фазных проводов (S) [мм2]	Минимальная площадь поперечного сечения соответствующего провода защитного заземления [мм²]
S ≤ 16	S
16 < S ≤ 35	16
35 < S	S/2

Приведенные в таблице значения действительны только в том случае, если провод защитного заземления изготовлен из того же металла, что и фазные провода. В противном случае площадь поперечного сечения провода защитного заземления определяется таким образом, чтобы его проводимость была равна проводимости, полученной путем применения этой таблицы.

Площадь поперечного сечения каждого провода защитного заземления, не входящего в состав кабеля электросети или оболочки кабеля, ни при каких обстоятельствах не может быть меньше

- 2,5 мм² при наличии механической защиты и
- 4 мм² при отсутствии механической защиты. Если оборудование подключается через шнур, необходимо обеспечить выполнение следующего условия: в случае сбоя механизма компенсации натяжения провод защитного заземления должен обрываться последним из проводов шнура.

VACON · 14 БЕЗОПАСНОСТЬ

Всегда необходимо соблюдать местные нормативы, касающиеся минимального сечения провода защитного заземления.

ПРИМЕЧАНИЕ!

Из-за больших емкостных токов в приводе переменного тока выключатели для защиты от тока замыкания на землю могут работать неправильно.

осторожно!

Запрещено проводить испытания привода на электрическую прочность по напряжению. Эти испытания уже были проведены изготовителем. Выполнение испытаний на электрическую прочность может привести к повреждению привода.

2.5 ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ (ЭМС)

Привод должен соответствовать требованиям стандарта IEC 61000-3-12. В этой связи мощность короткого замыкания S_{SC} должна составлять не менее 120 R_{SCE} в точке соединения пользовательской сети электроснабжения с сетью общего пользования. Убедитесь в том, что привод и двигатель подключены к сети электроснабжения с мощностью короткого замыкания S_{SC} не менее 120 R_{SCE}. При необходимости обратитесь за консультацией к оператору сети электроснабжения.

2.6 ИСПОЛЬЗОВАНИЕ УСТРОЙСТВА RCD ИЛИ RCM

При работе привода в проводе защитного заземления могут возникать токи. Для защиты от прямого или непрямого контакта можно использовать устройство защитного отключения (RCD) или устройство контроля дифференциального тока (RCM). Используйте устройство RCD или RCM типа В со стороны подключения привода к сети электроснабжения.

ПОЛУЧЕНИЕ ТОВАРА VACON · 15

3 ПОЛУЧЕНИЕ ТОВАРА

Перед отправкой преобразователя частоты Vacon® клиенту производитель выполняет целый ряд испытаний привода. Тем не менее, после удаления упаковки осмотрите привод, чтобы выяснить, не были ли получены какие-либо повреждения при перевозке.

Если привод был поврежден при транспортировке, свяжитесь с компанией по страхованию грузов или с транспортным агентством.

Чтобы убедиться в правильности и полноте доставки, сравните обозначение типа продукта с кодом обозначения типа. См. главу 3.2 Код обозначения типа.

3.1 УПАКОВОЧНАЯ ЭТИКЕТКА

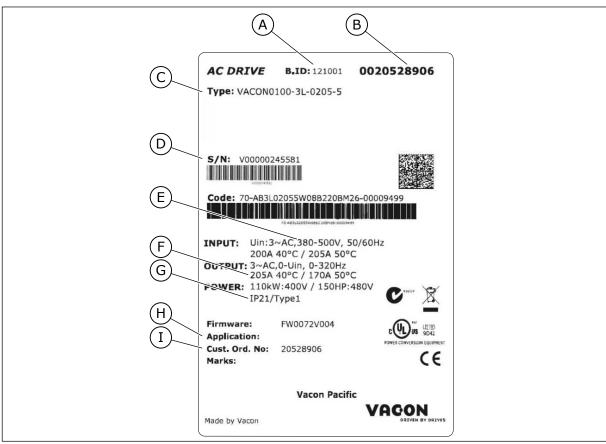


Рис. 1: Упаковочная этикетка преобразователей частоты Vacon

- А. Номер партии
- B. Номер заказа Vacon
- С. Код обозначения типа
- D. Серийный номер
- Е. Напряжение электросети

- F. Номинальный выходной ток
- G. Степень защиты IP
- Н. Код приложения
- I. Номер заказа клиента

VACON · 16 ПОЛУЧЕНИЕ ТОВАРА

3.2 КОД ОБОЗНАЧЕНИЯ ТИПА

Код обозначения типа Vacon состоит из стандартных кодов и дополнительных кодов. Каждая из частей кода обозначения типа должна соответствовать данным, указанным в вашем заказе. Например, код может иметь следующий формат:

VACON0100-3L-0061-5+IP54 VACON0100-3L-0061-5-FLOW

Табл. 3: Описание частей кода обозначения типа

Код	Описание	
VACON	Эта часть будет одинаковой на всех изделиях.	
0100	Номенклатура изделий: 0100 = Vacon 100	
3L	Вход/функция: 3L = трехфазный вход	
0061	Номинальный ток привода в амперах. Например, 0061 = 61 А	
5	Напряжение электросети:	
	2 = 208-240 B 5 = 380-500 B	
FLOW	Привод переменного тока Vacon 100 FLOW	
+IP54	Дополнительные коды. Существуют различные исполнения привода, например с добавлением IP54 (привод переменного тока с классом защиты IP54).	

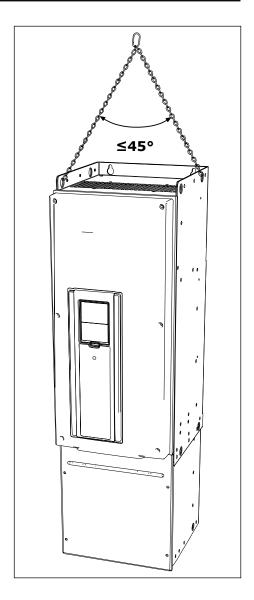
3.3 РАСПАКОВКА И ПОДЪЕМ ПРИВОДА ПЕРЕМЕННОГО ТОКА

3.3.1 МАССА ПРИВОДА ПЕРЕМЕННОГО ТОКА

Масса привода переменного тока зависит от его типоразмера. Для извлечения привода из упаковки может потребоваться специальное подъемное оборудование.

ПОЛУЧЕНИЕ ТОВАРА VACON · 17

Табл. 4: Масса приводов различных типоразмеров


Типораз мер	Macca, IP21/IP54 [кг]	Масса, IP00 [кг]	Масса, UL Туре 1/ Туре 12 [фунтов]	Macca, UL Open Туре [фунтов]
MR4	6.0		13.2	
MR5	10.0		22.0	
MR6	20.0		44.1	
MR7	37.5		82.7	
MR8	66.0	62.0	145.5	136.7
MR9	119.5	103.5	263.5	228.2

3.3.2 ПОДЪЕМ ПРИВОДОВ ТИПОРАЗМЕРОВ MR8 И MR9

- 1 Снимите привод с поддона, к которому он прикручен болтами.
- Подъемный механизм должен быть рассчитан на массу привода.
- 3 Вставьте подъемные крюки симметрично не менее чем в два отверстия.

VACON · 18 ПОЛУЧЕНИЕ ТОВАРА

4 Угол подъема не должен превышать 45 градусов.

3.4 ДОПОЛНИТЕЛЬНЫЕ ПРИНАДЛЕЖНОСТИ

После открытия упаковки и извлечения из нее привода убедитесь в том, что вы получили все заказанные дополнительные компоненты. Комплектность пакета дополнительных компонентов зависит от типоразмера привода и класса защиты.

ПОЛУЧЕНИЕ ТОВАРА VACON · 19

3.4.1 ТИПОРАЗМЕР MR4

Табл. 5: Содержимое пакета с дополнительными принадлежностями

Компонент	Количество	Описание
Винт М4х16	11	Винты для зажимов заземления экрана кабеля (6), зажимов заземления кабеля управления (3) и зажимов заземления провода заземления (2)
Винт М4х8	1	Винт для дополнительного заземления
Винт М5х12	1	Винт для внешнего заземления привода
Зажим заземления кабеля управления	3	Заземление кабеля управления
Зажим заземления экрана кабеля, размер M25	3	Фиксация кабелей питания
Зажим заземления провода заземления	2	Заземление кабеля питания
Этикетка «Product modified»	1	Данные об изменениях
IP21: кабельная втулка	3	Кабельные муфты
IP54: кабельная втулка	6	Кабельные муфты

VACON · 20 ПОЛУЧЕНИЕ ТОВАРА

3.4.2 ТИПОРАЗМЕР MR5

Табл. 6: Содержимое пакета с дополнительными принадлежностями

Компонент	Количество	Описание
Винт М4х16	13	Винты для зажимов заземления экрана кабеля (6), зажимов заземления кабеля управления (3) и зажимов заземления про- вода заземления (4)
Винт М4х8	1	Винт для дополнительного заземления
Винт М5х12	1	Винт для внешнего заземления привода
Зажим заземления кабеля управления	3	Заземление кабеля управления
Зажим заземления экрана кабеля, размер M25	1	Фиксация кабеля тормозного резистора
Зажим заземления экрана кабеля, размер M32	2	Фиксация кабелей питания
Зажим заземления провода заземления	2	Заземление кабеля питания
Этикетка «Product modified»	1	Данные об изменениях
IP21: Кабельная втулка с диаметром отверстия 25,3 мм	1	Кабельные муфты
IP54: Кабельная втулка с диаметром отверстия 25,3 мм	4	Кабельные муфты
Кабельная втулка с диаметром отверстия 33,0 мм	2	Кабельные муфты

ПОЛУЧЕНИЕ ТОВАРА VACON · 21

3.4.3 ТИПОРАЗМЕР МR6

Табл. 7: Содержимое пакета с дополнительными принадлежностями

Компонент	Количество	Описание
Винт М4х20	10	Винты для зажимов заземления экрана кабеля (6) и зажимов заземления провода заземления (4)
Винт М4х16	3	Винты для зажимов кабелей управления
Винт М4х8	1	Винт для дополнительного заземления
Винт М5х12	1	Винт для внешнего заземления привода
Зажим заземления кабеля управления	3	Заземление кабеля управления
Зажим заземления экрана кабеля, размер М32	1	Фиксация кабеля тормозного резистора
Зажим заземления экрана кабеля, размер M40	2	Фиксация кабелей питания
Зажим заземления провода заземления	2	Заземление кабеля питания
Этикетка «Product modified»	1	Данные об изменениях
Кабельная втулка с диаметром отверстия 33,0 мм	1	Кабельные муфты
Кабельная втулка с диаметром отверстия 40,3 мм	2	Кабельные муфты
IP54: Кабельная втулка с диаметром отверстия 25,3 мм	3	Кабельные муфты

ПРИМЕЧАНИЕ!

Программное обеспечение Vacon® 100 FLOW и HVAC не поддерживает функции динамического торможения или тормозного резистора.

VACON · 22 ПОЛУЧЕНИЕ ТОВАРА

3.4.4 ТИПОРАЗМЕР MR7

Табл. 8: Содержимое пакета с дополнительными принадлежностями

Компонент	Количество	Описание
Гайка со шлицем М6х30	6	Гайки для зажимов заземления экрана кабеля
Винт М4х16	3	Винты для зажимов заземления кабеля управления
Винт М6х12	1	Винт для внешнего заземления привода
Зажим заземления кабеля управления	3	Заземление кабеля управления
Зажим заземления экрана кабеля, размер M25	3	Фиксация кабелей питания
Зажим заземления провода заземления	2	Заземление кабеля питания
Этикетка «Product modified»	1	Данные об изменениях
IP21: кабельная втулка	3	Кабельные муфты
IP54: кабельная втулка	3	Кабельные муфты

3.4.5 ТИПОРАЗМЕР MR8

Табл. 9: Содержимое пакета с дополнительными принадлежностями

Компонент	Количество	Описание
Винт М4х16	3	Винты для зажимов заземления кабеля управления
Зажим заземления кабеля управления	3	Заземление кабеля управления
Зажим заземления экрана кабеля, размер КР40	3	Фиксация кабелей питания
Изолятор кабеля	11	Для предотвращения соприкосновения кабелей друг с другом.
Кабельная втулка с диаметром отверстия 25,3 мм	4	Кабельные муфты
IP00: Защитный щиток	1	Для предотвращения соприкосновения с токоведущими частями.
IP00: Винт M4x8	2	Для крепления защитного щитка

ПОЛУЧЕНИЕ ТОВАРА VACON · 23

3.4.6 ТИПОРАЗМЕР MR9

Табл. 10: Содержимое пакета с дополнительными принадлежностями

Компонент	Количество	Описание
Винт М4х16	3	Винты для зажимов заземления кабеля управления
Зажим заземления кабеля управления	3	Заземление кабеля управления
Зажим заземления экрана кабеля, размер КР40	5	Фиксация кабелей питания
Изолятор кабеля	10	Для предотвращения соприкосновения кабелей друг с другом.
Кабельная втулка с диаметром отверстия 25,3 мм	4	Кабельные муфты
IP00: Защитный щиток	1	Для предотвращения соприкосновения с токоведущими частями.
IP00: Винт M4x8	2	Для крепления защитного щитка

3.5 **STUKETKA «PRODUCT MODIFIED»**

В пакете с дополнительными принадлежностями находится этикетка «Product modified». Эта этикетка предназначена для того, чтобы обратить внимание обслуживающего персонала на изменения, сделанные в приводе переменного тока. Прикрепите этикетку на боковой стенке привода, чтобы не потерять ее. Изменения, вносимые в конструкцию привода переменного тока, следует фиксировать на этой этикетке.

Product modifiedDate:
Date:
Date:

3.6 УТИЛИЗАЦИЯ

После истечения срока службы устройства запрещается его утилизировать вместе с обычным бытовым мусором. Допускается вторичная переработка основных компонентов изделия. Для извлечения некоторых материалов может потребоваться снятие тех или иных компонентов привода. Электрические и электронные компоненты следует перерабатывать как отходы.

Для надлежащей переработки такие компоненты следует отправить в центр переработки отходов. Также отходы можно вернуть производителю.

Соблюдайте местные нормативы и другие применимые требования.

VACON · 24 MOHTAЖ

4 МОНТАЖ

4.1 ОБЩАЯ ИНФОРМАЦИЯ О МОНТАЖЕ

Преобразователь частоты монтируется на стене в вертикальном положении. Если преобразователь установить горизонтально, некоторые функции с номинальными значениями, указанными в главах 8 Технические характеристики, Vacon® 100 или 9 Технические характеристики, Vacon® 100 FLOW, могут быть недоступны.

Установку преобразователя частоты следует выполнять с помощью винтов или других компонентов, включенных в комплект поставки.

4.2 РАЗМЕРЫ ДЛЯ НАСТЕННОГО МОНТАЖА

4.2.1 НАСТЕННЫЙ МОНТАЖ ПРИВОДА MR4

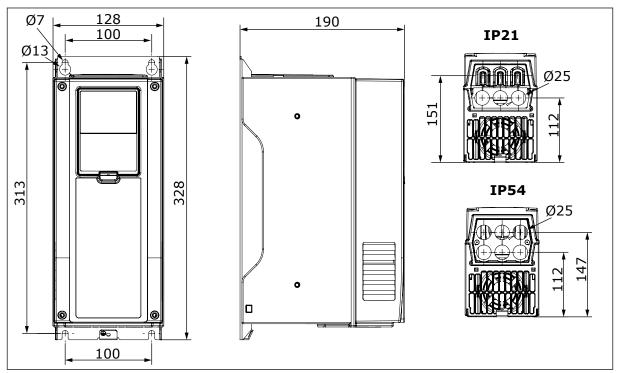


Рис. 2: Настенный монтаж привода переменного тока MR4

MOHTAЖ VACON ⋅ 25

4.2.2 НАСТЕННЫЙ МОНТАЖ ПРИВОДА MR5

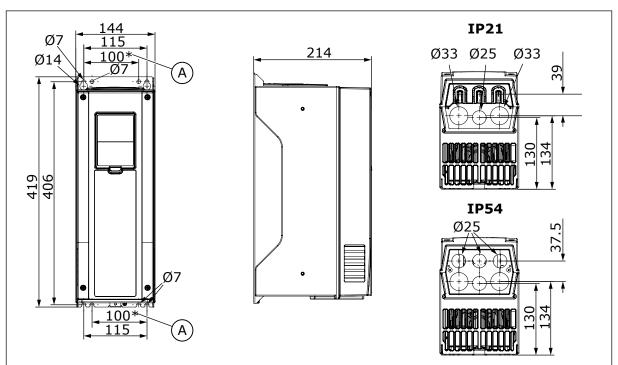


Рис. 3: Габариты преобразователя частоты MR5

А. Эти монтажные отверстия используются при замене преобразователя частоты Vacon® NX на преобразователь частоты Vacon® 100, Vacon® 100 FLOW или Vacon® 100 HVAC.

VACON · 26 MOHTAЖ

4.2.3 НАСТЕННЫЙ МОНТАЖ ПРИВОДА MR6

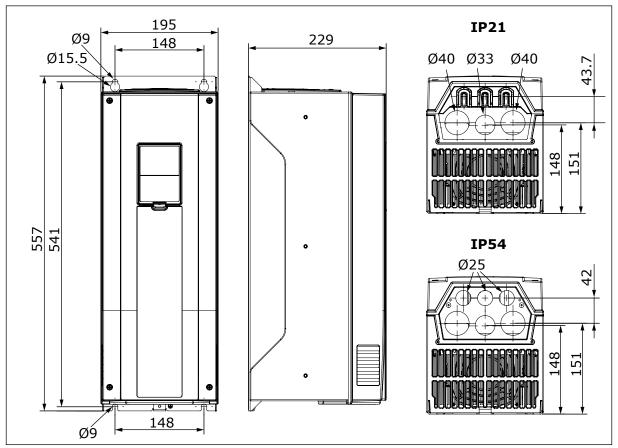


Рис. 4: Настенный монтаж привода переменного тока MR6

MOHTAЖ VACON · 27

4.2.4 НАСТЕННЫЙ МОНТАЖ ПРИВОДА MR7

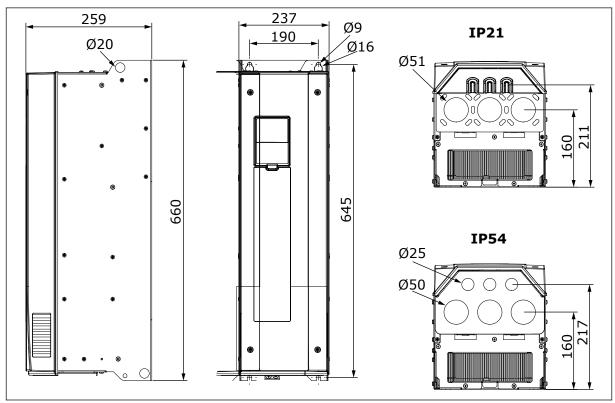


Рис. 5: Габариты преобразователя частоты MR7

VACON ⋅ 28 MOHTAЖ

4.2.5 НАСТЕННЫЙ МОНТАЖ ПРИВОДА MR8, IP21 И IP54

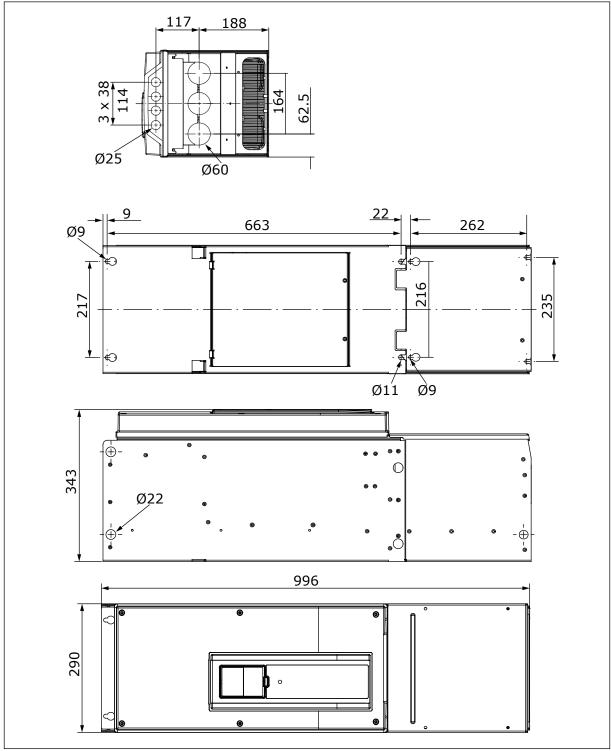


Рис. 6: Настенный монтаж привода переменного тока MR8, IP21 и IP54

MOHTAЖ VACON · 29

4.2.6 НАСТЕННЫЙ МОНТАЖ ПРИВОДА MR8, IP00

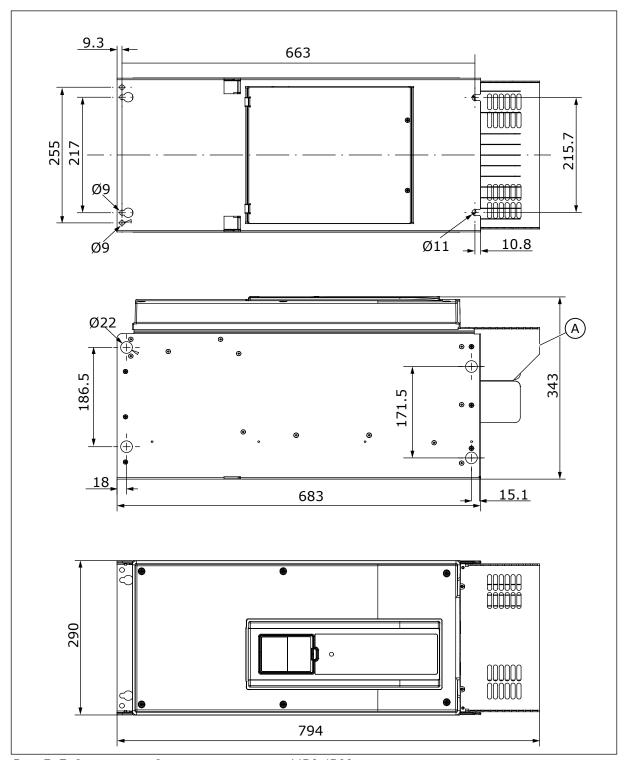


Рис. 7: Габариты преобразователя частоты MR8, IP00

VACON · 30 MOHTAЖ

4.2.7 НАСТЕННЫЙ МОНТАЖ ПРИВОДА MR9, IP21 И IP54

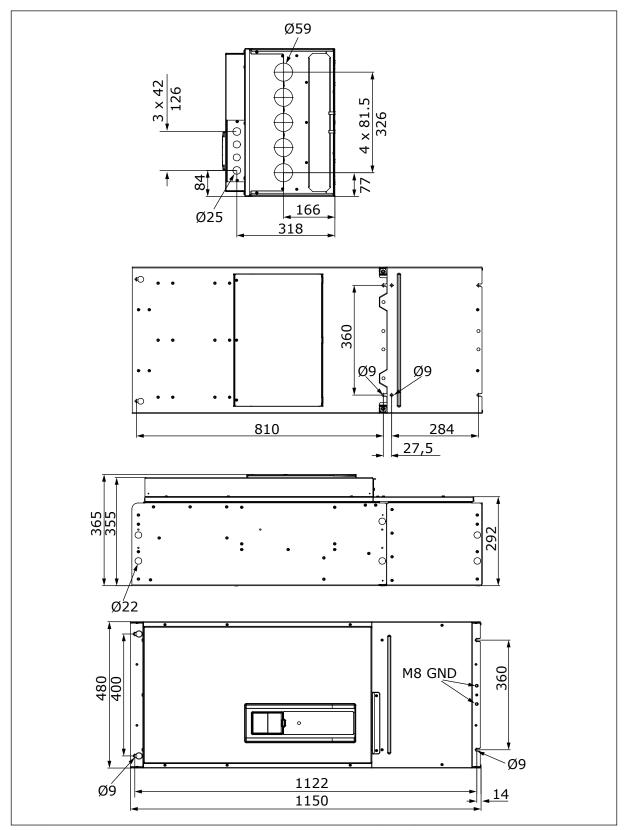


Рис. 8: Настенный монтаж привода переменного тока MR9, IP21 и IP54

MOHTAЖ VACON ⋅ 31

4.2.8 НАСТЕННЫЙ МОНТАЖ ПРИВОДА MR9, IP00

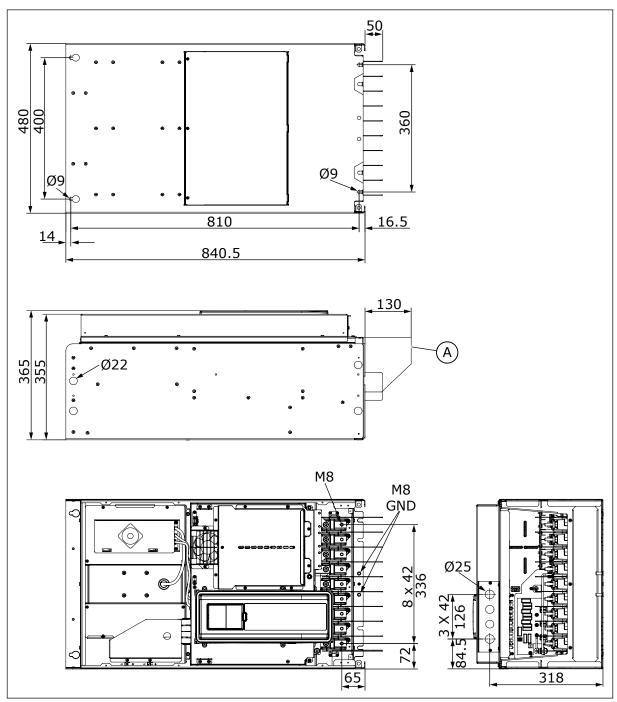


Рис. 9: Настенный монтаж привода переменного тока MR9, IP00

А. Дополнительная крышка главного разъема для монтажа в шкафу

4.3 РАЗМЕРЫ ДЛЯ МОНТАЖА С ИСПОЛЬЗОВАНИЕМ ФЛАНЦЕВОГО КРЕПЛЕНИЯ

Привод переменного тока также можно устанавливать на стенке шкафа с использованием дополнительного фланцевого крепления.

VACON · 32 MOHTAЖ

ПРИМЕЧАНИЕ!

Класс защиты привода будет разным в разных секциях.

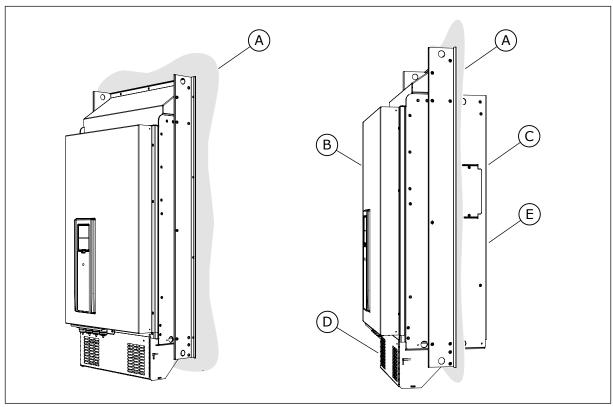


Рис. 10: Пример фланцевого крепления (типоразмер MR9)

- А. Стенка шкафа или другая поверхность
- В. Лицевая часть
- С. Задняя часть

- D. IP00/UL открытого типа
- E. IP54/UL типа 12

MOHTAЖ VACON · 33

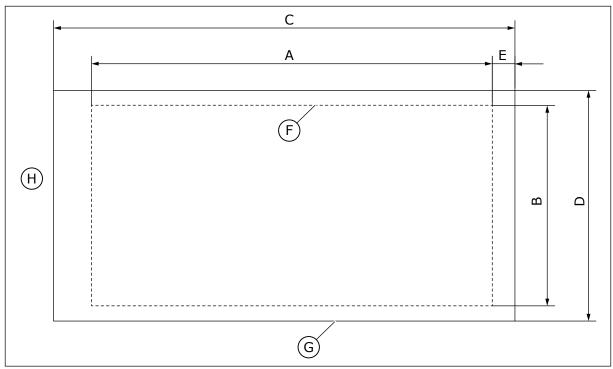


Рис. 11: Размеры монтажного проема и контуры привода с фланцевым креплением

- А. Высота отверстия для монтажа с использованием фланца
- В. Ширина отверстия
- С. Высота привода
- D. Ширина привода

- E. Расстояние от нижней части привода до нижней части отверстия
- F. Контур отверстия
- G. Контуры привода
- Н. Верх привода

Табл. 11: Габариты привода, типоразмеры MR4-MR9

Типоразмер	С [мм]	D [мм]	С [дюймов]	D [дюймов]	
MR4	357	152	14.1	6.0	
MR5	454	169	17.9	6.7	
MR6	580	220	22.8	8.7	
MR7	680	286	26.8	11.3	
MR8	898	359	35.4	14.1	
MR9	1060	550	41.7	21.7	

VACON · 34 MOHTAЖ

Табл. 12: Габариты отверстия для монтажа с использованием фланца, типоразмеры MR4–MR9

Типоразмер	А [мм]	В [мм]	Е [мм]	А [дюймов]	В [дюймов]	Е [дюймов]
MR4	315	137	24	12.4	5.4	0.9
MR5	408	152	23	16.1	6.0	0.9
MR6	541	203	23	21.3	8.0	0.9
MR7	655	240	13	25.8	9.4	0.5
MR8	859	298	18	33.8	11.7	0.7
MR9	975	485	54	38.4	19.1	2.1

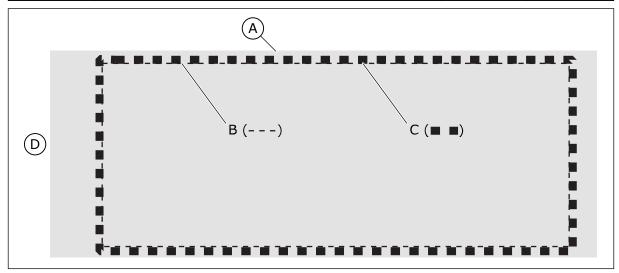


Рис. 12: Уплотнение для отверстия, MR8 и MR9

- А. Привод переменного тока
- В. Контур отверстия

- С. Уплотнительная лента
- D. Верх привода

MOHTAЖ VACON · 35

4.3.1 МОНТАЖ MR4 С ИСПОЛЬЗОВАНИЕМ ФЛАНЦА

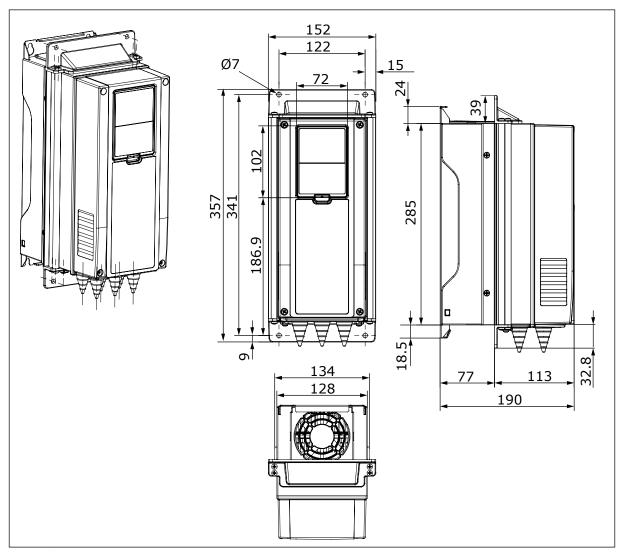


Рис. 13: Настенный монтаж привода переменного тока, фланцевое крепление, MR4

VACON · 36 MOHTAЖ

4.3.2 МОНТАЖ MR5 С ИСПОЛЬЗОВАНИЕМ ФЛАНЦА

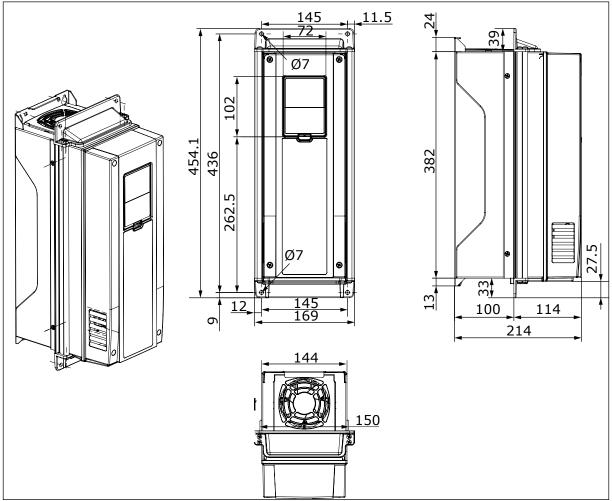


Рис. 14: Настенный монтаж привода переменного тока, фланцевое крепление, MR5

MOHTAXK VACON · 37

4.3.3 МОНТАЖ MR6 С ИСПОЛЬЗОВАНИЕМ ФЛАНЦА

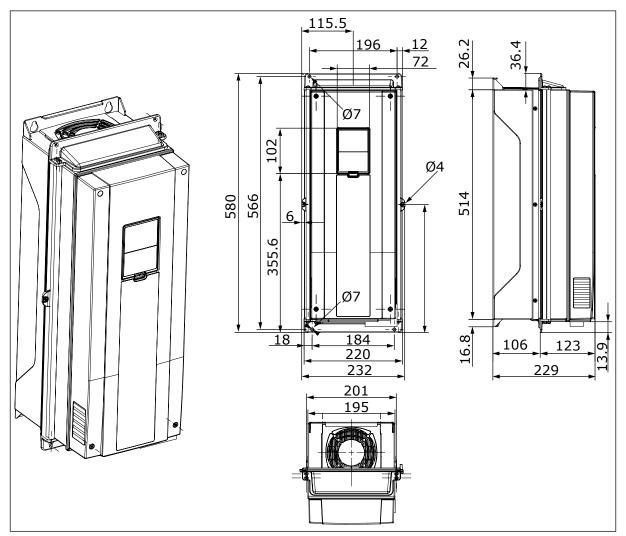


Рис. 15: Настенный монтаж привода переменного тока, фланцевое крепление, МR6

VACON · 38 MOHTAЖ

4.3.4 МОНТАЖ MR7 С ИСПОЛЬЗОВАНИЕМ ФЛАНЦА

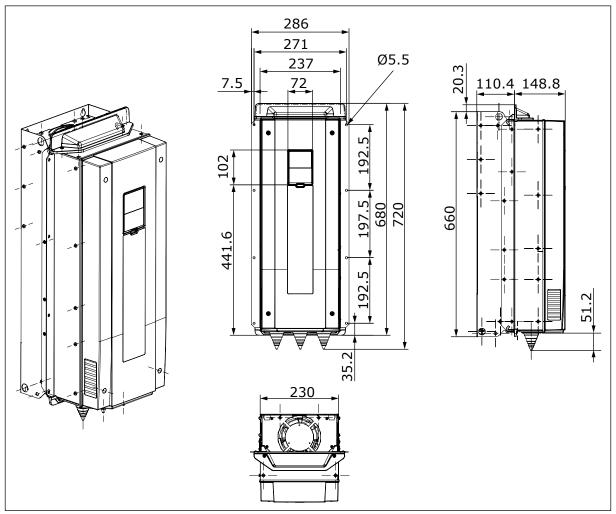


Рис. 16: Настенный монтаж привода переменного тока, фланцевое крепление, MR7

MOHTAЖ VACON ⋅ 39

4.3.5 МОНТАЖ MR8 С ИСПОЛЬЗОВАНИЕМ ФЛАНЦА

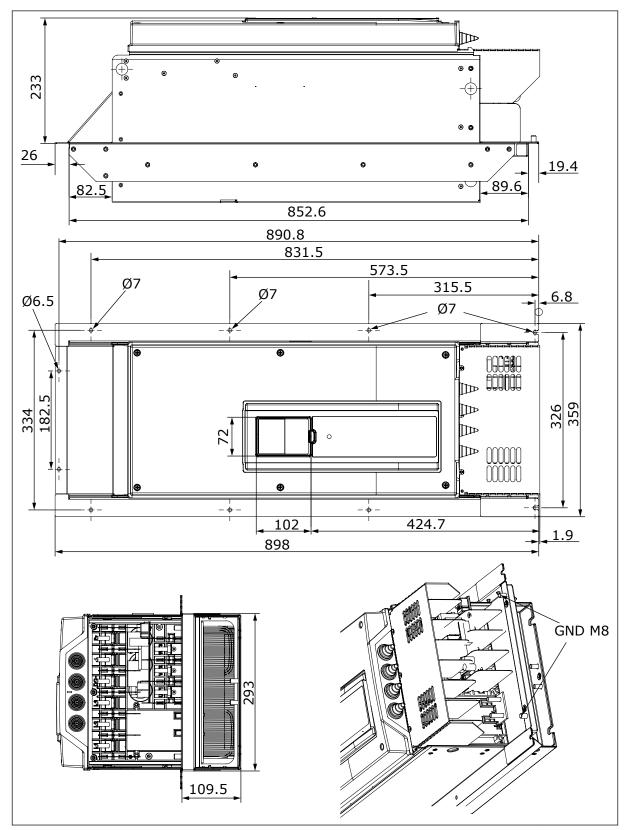


Рис. 17: Настенный монтаж привода переменного тока, фланцевое крепление, MR8

VACON · 40 MOHTAЖ

4.3.6 МОНТАЖ MR9 С ИСПОЛЬЗОВАНИЕМ ФЛАНЦА

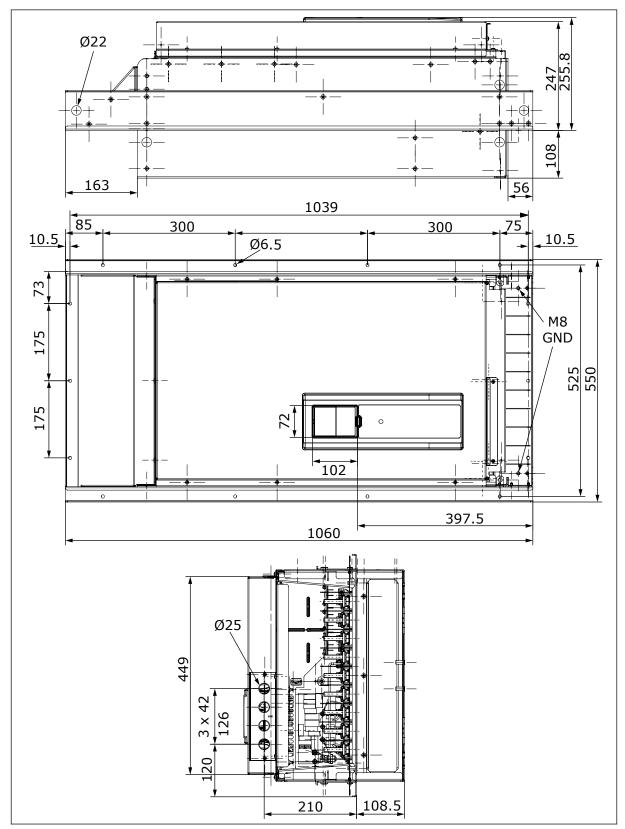


Рис. 18: Настенный монтаж привода переменного тока, фланцевое крепление, МК9

MOHTAЖ VACON ⋅ 41

4.4 ОХЛАЖДЕНИЕ

При работе приводы переменного тока выделяют тепло. Вентилятор используется для циркуляции воздуха с целью снижения температуры привода. Вокруг привода необходимо оставить достаточное свободное место. Также необходимо предусмотреть свободное место для обслуживания привода.

Убедитесь в том, что температура охлаждающего воздуха не превышает максимальную температуру окружающей среды привода и не опускается ниже минимальной температуры окружающей среды привода.

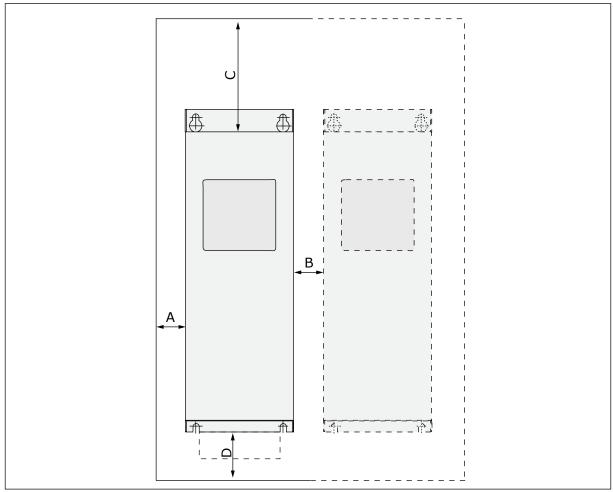


Рис. 19: Пространство для монтажа

- А. зазор по периметру привода
- В. расстояние от одного привода до другого или расстояние до стенки шкафа
- С. свободное пространство над приводом
- D. свободное пространство под приводом

VACON · 42 MOHTAЖ

Табл. 13: Минимальное пространство по периметру привода переменного тока

Минимальн	Минимальное расстояние [мм]					Минимальное расстояние [дюймов]			
Типоразм ер	A *	B*	С	D	A*	B*	С	D	
MR4	20	20	100	50	0.8	0.8	3.9	2.0	
MR5	20	20	120	60	0.8	0.8	4.7	2.4	
MR6	20	20	160	80	0.8	0.8	6.3	3.1	
MR7	20	20	250	100	0.8	0.8	9.8	3.9	
MR8	20	20	300	150	0.8	0.8	11.8	5.9	
MR9	20	20	350	200	0.8	0.8	13.8	7.9	

^{*} = для приводов IP54/UL Type 12 минимальное расстояние A и B будет составлять 0 мм/0 дюймов.

Табл. 14: Требуемый объем охлаждающего воздуха

Типоразмер	Требуемый объем охлаждающего воздуха [м³/ч]	Объем охлаждающего воздуха [кубических футов в минуту]		
MR4	45	26.5		
MR5	75	44.1		
MR6	190	111.8		
MR7	185	108.9		
MR8	335	197.2		
MR9	621	365.5		

MOHTAЖ VACON · 43

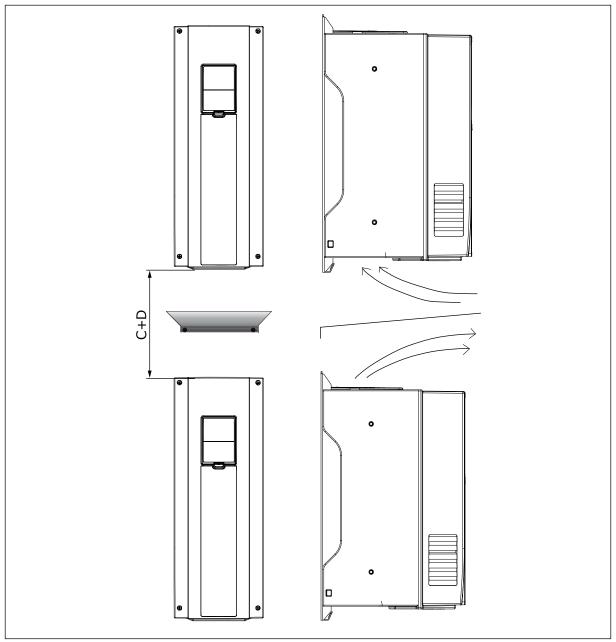


Рис. 20: Расстояние между приводами при монтаже друг над другом

Если несколько приводов монтируются друг над другом.

- 1. Необходимое свободное пространство рассчитывается как C + D.
- 2. Убедитесь в том, что воздух, выходящий из нижнего привода, не попадает в воздухозаборные отверстия привода, расположенного выше. Для этого между приводами следует предусмотреть металлическую пластину, закрепленную на стенке шкафа.
- 3. При установке приводов в шкафу не допускайте рециркуляции воздуха.

5 СОЕДИНЕНИЯ КАБЕЛЕЙ ПИТАНИЯ

5.1 ПОДСОЕДИНЕНИЕ КАБЕЛЕЙ

Кабели электросети подключаются к клеммам L1, L2 и L3. Кабели двигателя подключаются к клеммам U, V и W.

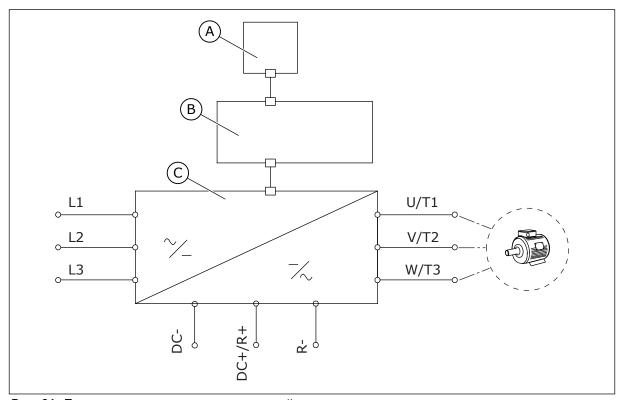


Рис. 21: Принципиальная схема соединений

А. Панель управления

С. Блок питания

В. Блок управления

Используйте кабели с теплостойкостью не менее +70 °C (158 °F). При выборе кабелей и предохранителей учитывайте номинальный **выходной** ток двигателя. Номинальный выходной ток указан на паспортной табличке.

Табл. 15: Выбор подходящего кабеля

Тип кабеля	Требования ЭМС					
	1е условия эксплуатации	2е условия э	ксплуатации			
	Категория С2	Категория СЗ	Категория С4			
Кабель электросети	1	1	1			
Кабель двигателя	3 *	2	2			
Кабель управления	4	4	4			

- 1. Кабель питания для стационарного монтажа. Кабель для указанного напряжения электросети. Экранированный кабель использовать необязательно. Рекомендуется использовать кабель МСМК.
- 2. Симметричный кабель питания, снабженный концентрической защитной проволокой. Кабель для указанного напряжения электросети. Рекомендуется использовать кабель МСМК. См. *Рис.* 22.
- 3. Симметричный кабель питания, снабженный плотным низкоомным экраном. Кабель для указанного напряжения электросети. Рекомендуется использовать кабель МССМК или ЕМСМК. Рекомендуемое полное проходное сопротивление кабеля (в диапазоне 1–30 МГц): не более 100 мОм/м. См. *Рис. 22.* * = для обеспечения уровня электромагнитных помех С2 требуется круговое (360°) заземление экрана с помощью кабельных вводов со стороны двигателя.
- 4. Экранированный кабель, снабженный плотным низкоомным экраном, например JAMAK или SAB/ÖZCuY-O.

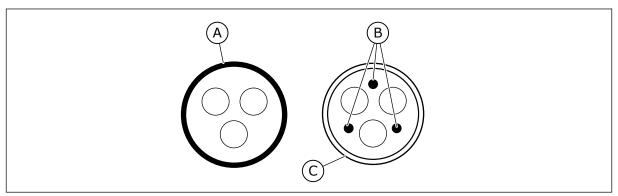


Рис. 22: Кабели с проводом защитного заземления

- А. Провод защитного заземления и экран С. Экран
- В. Провода защитного заземления

Для соблюдения требований ЭМС в приводах любых типоразмеров используйте частоты переключения, заданные по умолчанию.

При установке защитного переключателя защита от электромагнитных помех должна быть непрерывной по всей длине кабеля.

5.2 СТАНДАРТЫ UL НА МОНТАЖ КАБЕЛЕЙ

Для удовлетворения требованиям стандартов UL (Лаборатория по технике безопасности США) необходимо использовать рекомендованные UL медные кабели класса 1 с теплостойкостью не менее 60 или 75 °C (140 или 167 °F).

Приводы переменного тока можно использовать в цепях, способных передавать симметричный ток с действующим значением не более 100 000 A и напряжением не более 600 B при условии использования защитных предохранителей класса T и класса J.

5.3 ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ И ВЫБОР КАБЕЛЕЙ

Приведенные здесь указания применимы только в тех случаях, когда к приводу переменного тока подключен только один двигатель и кабель. В иных случаях для получения дополнительной информации обратитесь к производителю.

5.3.1 СЕЧЕНИЯ КАБЕЛЕЙ И ДАННЫЕ ПРЕДОХРАНИТЕЛЕЙ

Рекомендуется использовать предохранители типа gG/gL (IEC 60269-1). При выборе номинального напряжения предохранителей учитывайте параметры сети электроснабжения. Не используйте предохранители с номиналом выше рекомендуемого в *Табл. 16*.

Убедитесь, что время срабатывания предохранителя меньше 0,4 секунды. Время срабатывания должно соответствовать типу предохранителя и импедансу цепи питания. Для получения дополнительных сведений об использовании более быстродействующих предохранителей обратитесь к производителю. Производитель также может порекомендовать использование некоторых предохранителей aR (UL, IEC 60269-4) и gS (IEC 60269-4).

В следующей таблице показаны стандартные размеры и типы кабелей, которые можно использовать с преобразователем частоты. Выбирайте кабели в соответствии с местными правилами, условиями монтажа и с учетом технических характеристик кабелей.

ПРИМЕЧАНИЕ!

Табл. 16: Сечения кабелей и данные предохранителей для приводов Vacon® 100

Типора	Тип	IL [A]	Предохра	Кабели сети	Размер кабельной клеммы		
змер			нитель (gG/gL) [A]	электроснабжени я, кабели двигателя и тормозного резистора*, медь, [мм2]	Клемма сети электроснабж ения [мм²]	Клемма заземления [мм ²]	
	0003 2—0004 2 0003 5—0004 5	3.7—4.8 3.4—4.8	6	3x1,5+1,5	1–6 одножиль- ный 1–4 много- жильный	1-6	
MR4	0006 2—0008 2 0005 5—0008 5	6.6—8.0 5.6—8.0	10	3x1,5+1,5	1–6 одножиль- ный 1–4 много- жильный	1-6	
	0011 2—0012 2 0009 5—0012 5	11.0—12.5 9.6—12.0	16	3x2,5+2,5	1–6 одножиль- ный 1–4 много- жильный	1-6	
	0018 2 0016 5	18.0 16.0	20	3x6+6	1–10 Cu	1-10	
MR5	0024 2 0023 5	24.0 23.0	25	3x6+6	1–10 Cu	1-10	
	0031 2 0031 5	31.0 31.0	32	3x10+10	1–10 Cu	1-10	
	0038 5	38.0	40	3x10+10	2,5-50 Cu/Al	2.5-35	
MR6	0048 2 0046 5	48.0 46.0	50	3x16+16 (медь) 3x25+16 (алюми- ний)	2,5-50 Cu/Al	2.5-35	
	0062 2 0061 5	62.0 61.0	63	3x25+16 (медь) 3x35+10 (алюми- ний)	2,5-50 Cu/Al	2.5-35	

Табл. 16: Сечения кабелей и данные предохранителей для приводов Vacon® 100

Типора	Тип	IL [A]	Предохра	Кабели сети	Размер кабельн	ой клеммы
змер			нитель (gG/gL) [A]	электроснабжени я, кабели двигателя и тормозного резистора*, медь, [мм ²]	Клемма сети электроснабж ения [мм2]	Клемма заземления [мм ²]
	0075 2 0072 5	75.0 72.0	80	3x35+16 (медь) 3x50+16 (алюми- ний)	6-70 мм2 Cu/Al	6-70 мм2
MR7	0088 2 0087 5	88.0 87.0	100	3x35+16 (медь) 3x70+21 (алюми- ний)	6-70 мм2 Cu/Al	6-70 мм2
	0105 2 0105 5	105.0	125	3x50+25 (медь) 3x70+21 (алюми- ний)	6-70 мм2 Cu/Al	6-70 мм2
	0140 2 0140 5	140.0	160	3x70+35 (медь) 3x95+29 (алюми- ний)	Болт М8	Болт М8
MR8	0170 2 0170 5	170.0	200	3x95+50 (медь) 3x150+41 (алюми- ний)	Болт М8	Болт М8
	0205 2 0205 5	205.0	250	3x120+70 (медь) 3x185+57 (алюми- ний)	Болт М8	Болт М8
MBG	0261 2 0261 5	261.0	315	3x185+95 (медь) 2x3x120+41 (алю- миний)	Болт М10	Болт М8
MR9	0310 2 0310 5	310.0	350	2x3x95+50 (медь) 2x3x120+41 (алю- миний)	Болт М10	Болт М8

^{* =} при использовании многожильного кабеля учтите, что один из проводников кабеля тормозного резистора остается неподсоединенным. Также можно использовать одножильный кабель при условии соблюдения минимального поперечного сечения.

Размеры кабелей должны соответствовать требованиям стандарта IEC60364-5-52.

- Используйте кабели с ПВХ-изоляцией.
- Максимальная температура окружающего воздуха: +30 °C (86 °F).
- Максимальная температура поверхности кабеля: +70 °C (158 °F).
- Используйте только кабели с концентрическим медным экраном.
- Максимальное число параллельных кабелей: 9.

При использовании параллельных кабелей убедитесь в том, что соблюдены требования к их поперечному сечению и максимальному количеству.

В главе 2.4 Заземление и защита от замыкания на землю приведена важная информация о проводе заземления.

Поправочные коэффициенты, зависящие от температуры, определяются стандартом IEC60364-5-52.

5.3.2 СЕЧЕНИЯ КАБЕЛЕЙ И ДАННЫЕ ПРЕДОХРАНИТЕЛЕЙ, СЕВЕРНАЯ АМЕРИКА

Рекомендуется использовать предохранители класса Т (UL и CSA). При выборе номинального напряжения предохранителей учитывайте параметры сети электроснабжения. Также см. местные правила, условия монтажа и технические характеристики кабелей. Не используйте предохранители с номиналом выше рекомендуемого в *Табл. 17*.

Убедитесь, что время срабатывания предохранителя меньше 0,4 секунды. Время срабатывания должно соответствовать типу предохранителя и импедансу цепи питания. Для получения дополнительных сведений об использовании более быстродействующих предохранителей обратитесь к производителю. Для увеличения быстродействия производитель также может порекомендовать использование некоторых предохранителей Class J (UL и CSA), а также aR (UL).

Встроенная полупроводниковая защита от короткого замыкания не обеспечивает защиту параллельной цепи преобразователя частоты. Для организации защиты параллельной цепи см. национальные правила эксплуатации и обслуживания электрических установок, а также местные нормативы. Для защиты параллельной цепи используйте только плавкие предохранители.

ПРИМЕЧАНИЕ!

Табл. 17: Сечения кабелей и данные предохранителей для приводов Vacon® 100 в Северной Америке

Типора	Тип	IL [A]	Предохра нитель	Кабели сети	Размер кабельной клеммы		
змер		(класс Т/J) [A]		электроснабжени я, кабели двигателя и тормозного резистора*, медь [AWG]	Клемма сети электроснабж ения [AWG]	Клемма заземления [AWG]	
	0003 2 0003 5	3.7 3.4	6	AWG14	AWG24-AWG10	AWG17-AWG10	
	0004 2 0004 5	4.8	6	AWG14	AWG24-AWG10	AWG17-AWG10	
	0006 2 0005 5	6.6 5.6	10	AWG14	AWG24-AWG10	AWG17-AWG10	
MR4	0008 2 0008 5	8.0	10	AWG14	AWG24-AWG10	AWG17-AWG10	
	0011 2 0009 5	11.0 9.6	15	AWG14	AWG24-AWG10	AWG17-AWG10	
	0012 2 0012 5	12.5 12.0	20	AWG14	AWG24-AWG10	AWG17-AWG10	
	0018 2 0016 5	18.0 16.0	25	AWG10	AWG20-AWG5	AWG17-AWG8	
MR5	0024 2 0023 5	24.0 23.0	30	AWG10	AWG20-AWG5	AWG17-AWG8	
	0031 2 0031 5	31.0	40	AWG8	AWG20-AWG5	AWG17-AWG8	

Табл. 17: Сечения кабелей и данные предохранителей для приводов Vacon® 100 в Северной Америке

Типора	Тип	IL [A]	Предохра	Кабели сети	Размер кабельной клеммы		
змер			нитель (класс Т/J) [A]	электроснабжени я, кабели двигателя и тормозного резистора*, медь [AWG]	Клемма сети электроснабж ения [AWG]	Клемма заземления [AWG]	
	0038 5	38.0	50	AWG4	AWG13-AWG0	AWG13-AWG2	
MR6	0048 2 0046 5	48.0 46.0	60	AWG4	AWG13-AWG0	AWG13-AWG2	
	0062 2 0061 5 **	62.0 61.0	80	AWG4	AWG13-AWG0	AWG13-AWG2	
	0075 2 0072 5	75.0 72.0	100	AWG2	AWG9-AWG2/0	AWG9-AWG2/0	
MR7	0088 2 0087 5	88.0 87.0	110	AWG1	AWG9-AWG2/0	AWG9-AWG2/0	
	0105 2 0105 5	105.0	150	AWG1/0	AWG9-AWG2/0	AWG9-AWG2/0	
	0140 2 0140 5	140.0	200	AWG3/0	AWG1-350 kcmil	AWG1-350 kcmil	
MR8	0170 2 0170 5	170.0	225	250 kcmil	AWG1-350 kcmil	AWG1-350 kcmil	
	0205 2 0205 5	205.0	250	350 kcmil	AWG1-350 kcmil	AWG1-350 kcmil	
MES	0261 2 0261 5	261.0	350	2x250 kcmil	AWG1-350 kcmil	AWG1-350 kcmil	
MR9	0310 2 0310 5	310.0	400	2x350 kcmil	AWG1-350 kcmil	AWG1-350 kcmil	

- * = при использовании многожильного кабеля учтите, что один из проводников кабеля тормозного резистора остается неподсоединенным. Также можно использовать одножильный кабель при условии соблюдения минимального поперечного сечения.
- ** = для удовлетворения требованиям стандартов UL в отношении приводов с напряжением 500 В используйте кабели с теплостойкостью +90 °C (194 °F).

Размеры кабелей должны соответствовать требованиям стандарта UL 61800-5-1 Лаборатории по технике безопасности США.

- Используйте кабели с ПВХ-изоляцией.
- Максимальная температура окружающего воздуха: +30 °C (86 °F).
- Максимальная температура поверхности кабеля: +70 °C (158 °F).
- Используйте только кабели с концентрическим медным экраном.
- Максимальное число параллельных кабелей: 9.

При использовании параллельных кабелей убедитесь в том, что соблюдены требования к их поперечному сечению и максимальному количеству.

Важные сведения относительно требований к проводу заземления приведены в стандарте UL 61800-5-1 Лаборатории по технике безопасности США.

Поправочные коэффициенты для учета температуры приведены в указаниях стандарта UL 61800-5-1 Лаборатории по технике безопасности США.

5.4 КАБЕЛИ ТОРМОЗНОГО РЕЗИСТОРА

В преобразователях частоты Vacon® 100 предусмотрены клеммы для дополнительного внешнего тормозного резистора. Эти клеммы имеют маркировку R+ и R- (в MR4 и MR5) или DC+/R+ и R- (в MR6, MR7, MR8 и MR9). Рекомендуемые размеры кабелей тормозного резистора см. в главах 5.3.1 Сечения кабелей и данные предохранителей и 5.3.2 Сечения кабелей и данные предохранителей, Северная Америка.

осторожно!

При использовании многожильного кабеля учтите, что один из проводников кабеля тормозного резистора остается неподсоединенным. Отрежьте остаток провода, чтобы исключить его контакт с токопроводящими компонентами.

Номиналы тормозных резисторов см. в главе 8.1.4 Номинальные значения тормозных резисторов.

ПРИМЕЧАНИЕ!

Приводы типоразмеров MR7, MR8 и MR9 оснащены тормозным прерывателем, только если в коде обозначения типа присутствуют символы +DBIN. Приводы типоразмера MR4, MR5 и MR6 оснащены тормозным прерывателем в стандартном исполнении.

ПРИМЕЧАНИЕ!

5.5 ПОДГОТОВКА К УСТАНОВКЕ КАБЕЛЯ

- Перед началом работы убедитесь, что все элементы преобразователя частоты обесточены. Внимательно прочитайте предупреждения в главе 2 Безопасность.
- Размещайте кабели двигателя на достаточно большом расстоянии от других кабелей.
- Кабели двигателя должны пересекать другие кабели под углом 90°.
- По возможности избегайте прокладки кабелей двигателя параллельно с другими кабелями на большой длине.
- Если кабели двигателя проложены параллельно другим кабелям, выдерживайте требуемые минимальные расстояния (см. *Табл. 18 Минимальное расстояние между кабелями*).
- Данное расстояние должно соблюдаться также между кабелями двигателя и сигнальными кабелями других систем.
- Максимальная длина экранированного кабеля двигателя составляет 100 м (MR4), 150 м (MR5 и MR6) или 200 м (MR7, MR8 и MR9).
- Если необходимо проверить изоляцию кабелей, обратитесь к главе 7.4 Измерение изоляции кабеля и двигателя для получения соответствующих инструкций.

Табл. 18: Минимальное расстояние между кабелями

			Длина экранированного кабеля [футов]
0.3	≤ 50	1.0	≤ 164.0
1.0	≤ 200	3.3	≤ 656.1

5.6 МОНТАЖ КАБЕЛЕЙ

5.6.1 ТИПОРАЗМЕРЫ MR4-MR7

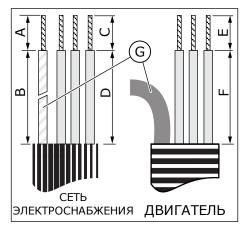
Табл. 19: Длина зачистки кабелей [мм]. См. рисунок в пункте 1.

Типоразме р	A	В	С	D	Е	F	G
MR4	15	35	10	20	7	35	*
MR5	20	40	10	30	10	40	*
MR6	20	90	15	60	15	60	*
MR7	20	80	20	80	20	80	*

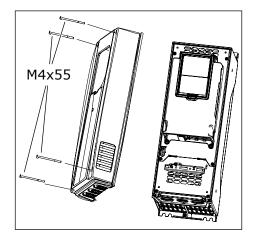
^{* =} как можно короче.

Табл. 20: Длина зачистки кабелей [дюймов]. См. рисунок в пункте 1.

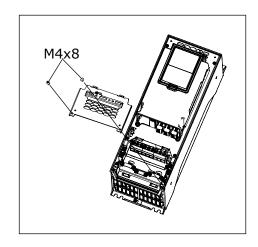
Типоразме р	A	В	С	D	E	F	G
MR4	0.6	1.4	0.4	0.8	0.3	1.4	*
MR5	0.8	1.6	0.4	1.2	0.4	1.6	*
MR6	0.8	3.6	0.6	2.4	0.6	2.4	*
MR7	0.8	3.1	0.8	3.1	0.8	3.1	*


^{* =} как можно короче.

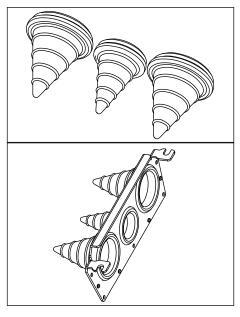
1 Зачистите кабель двигателя, кабель электросети и кабель тормозного резистора.

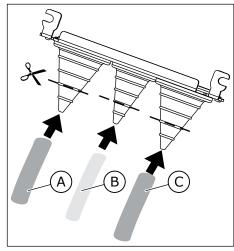

ПРИМЕЧАНИЕ!

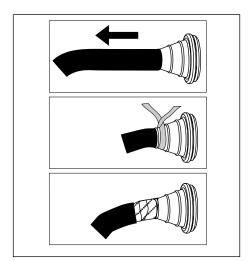
Программное обеспечение Vacon® 100 FLOW и HVAC не поддерживает функции динамического торможения или тормозного резистора.

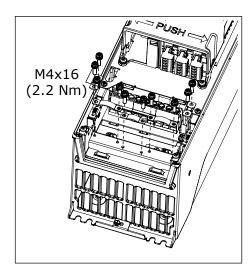


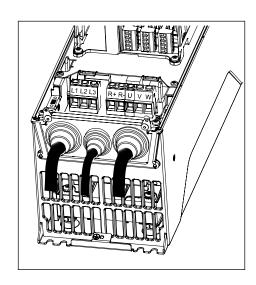
G. Провод заземления

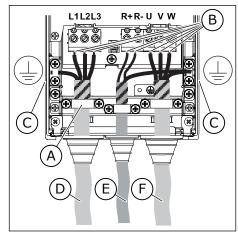

2 Снимите крышку преобразователя частоты.


3 Выкрутите винты на крышке кабельного отсека. Снимите крышку кабельного отсека. Не открывайте крышку блока питания.

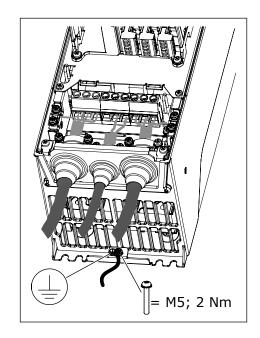

4 Вставьте резиновые втулки в отверстия пластины для ввода кабелей. Эти элементы входят в состав пакета. На рисунке показаны резиновые втулки в исполнении IP21 для стран EC.


- 5 Вставьте кабели кабель электросети, кабель двигателя и кабель тормозного резистора (при наличии) в отверстия пластины для ввода кабелей.
 - а) Подрежьте резиновые втулки и через образовавшиеся отверстия пропустите кабели. Если при пропускании кабеля втулки загибаются, для их выпрямления достаточно оттянуть кабель назад.
 - b) Не вырезайте отверстия во втулках шире, чем необходимо для используемых кабелей.
 - с) Для выполнения требований степени защиты корпуса IP54 втулка должна плотно прилегать к кабелю. Выведите кабель из втулки таким образом, чтобы его начальный участок был прямым. По возможности уплотните соединение с использованием изоляционной ленты или кабельной стяжки.


- А. Кабель электросети
- В. Кабель тормозного резистора
- С. Кабель двигателя


6 Снимите зажимы заземления экрана кабеля и зажимы заземления провода заземления. Момент затяжки составляет 2,2 Н⋅м или 19,5 фунт-дюйм.

7 Положите пластину для ввода кабелей с кабелями в углубление на корпусе привода.



- 8 Подсоедините зачищенные кабели.
 - а) Зачистите экраны всех трех кабелей, чтобы обеспечить их соединение по всей окружности (360 градусов) с зажимами заземления экрана кабеля.
 - b) Подсоедините (фазные) провода кабеля электросети, тормоза и двигателя, а также провода кабеля тормозного резистора к соответствующим клеммам.
 - с) Подключите провод заземления каждого кабеля к клемме заземления с использованием зажима заземления провода заземления.
 - d) Убедитесь в том, что внешний провод заземления подсоединен к шине заземления. См. главу 2.4 Заземление и защита от замыкания на землю.
 - е) Усилия затяжки см. в Табл. 21.

- А. Зажим заземления экрана кабеля
- В. Клеммы
- С. Клемма заземления
- D. Кабель электросети
- E. Кабель тормозного резистора
- F. Кабель двигателя

- 9 Убедитесь в том, что провод заземления подключен к двигателю и клеммам, обозначенным символом ⊕.
 - а) Для обеспечения соответствия требованиям стандарта EN 61800-5-1 следуйте инструкциям, указанным в главе 2.4 Заземление и защита от замыкания на землю.
 - b) Если требуется двойное заземление, используйте клемму заземления, расположенную под приводом. Заверните винт М5 и затяните его с моментом 2,0 Н·м.

10 Установите на место крышку кабельного отсека на приводе.

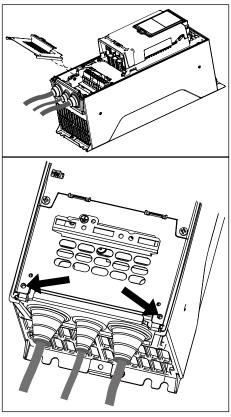


Табл. 21: Моменты затяжки кабельных клемм

Типора змер	Тип	клеммы кабеля		Момент затяжки: зажимы заземления экрана кабеля		Момент затяжки: зажимы заземления провода заземления	
		Н∙м	фунт- дюймы	Н∙м	фунт- дюймы	Н∙м	фунт- дюймы
MR4	0003 2 - 0012 2 0003 5 - 0012 5	0.5-0.6	4.5-5.3	1.5	13.3	2.0	17.7
MR5	0018 2 - 0031 2 0016 5 - 0031 5 0004 6 - 0011 6	1.2-1.5	10.6-13.3	1.5	13.3	2.0	17.7
MR6	0048 2 - 0062 2 0038 5 - 0061 5 0018 6 - 0034 6 0007 7 - 0034 7	10	88.5	1.5	13.3	2.0	17.7
MR7	0075 2 - 0105 2 0072 5 - 0105 5 0041 6 - 0062 6 0041 7 - 0062 7	8 * / 5.6 **	70.8 * / 49.6 **	1.5	13.3	8 * / 5.6 **	70.8 * / 49.6 **

^{* =} усилия затяжки винтов типа torx.

^{** =} усилия затяжки винтов типа Allen.

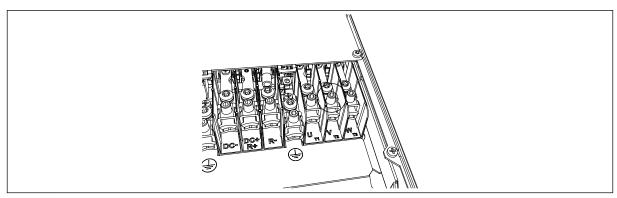


Рис. 23: Усилие затяжки винта типа Allen MR7 составляет 5,6 Н·м.

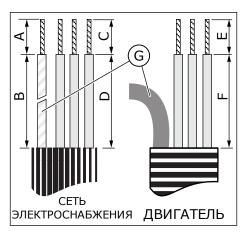
5.6.2 ТИПОРАЗМЕРЫ MR8-MR9

Табл. 22: Длина зачистки кабелей [мм]. См. рисунок в пункте 1.

Типоразме р	A	В	С	D	E	F	G
MR8	40	180	25	300	25	300	*
MR9	40	180	25	300	25	300	*

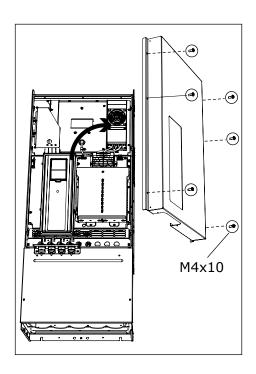
^{* =} как можно короче.

Табл. 23: Длина зачистки кабелей [дюймов]. См. рисунок в пункте 1.

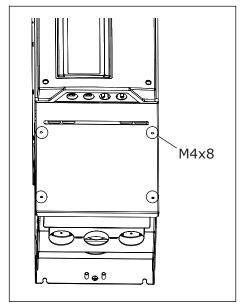

Типоразме р	A	В	С	D	Е	F	G
MR8	1.6	7.1	1	11.8	1	11.8	*
MR9	1.6	7.1	1	11.8	1	11.8	*

^{* =} как можно короче.

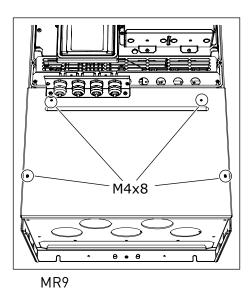
1 Зачистите кабель двигателя, кабель электросети и кабель тормозного резистора.



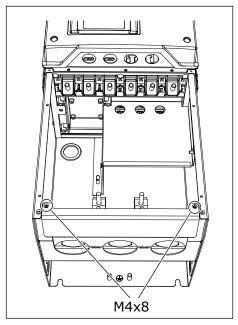
ПРИМЕЧАНИЕ!



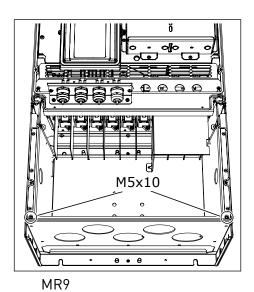
G. Провод заземления


2 Только MR9: Снимите крышку преобразователя

3 Снимите крышку кабельного отсека.

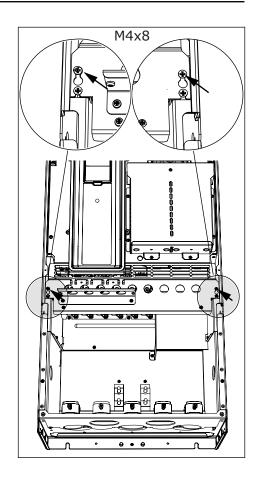


MR8

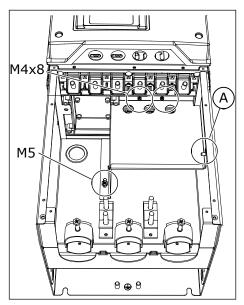


5

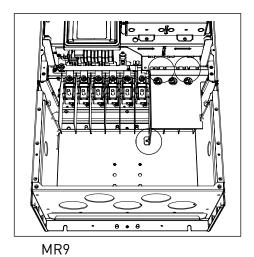
4 Снимите пластину для ввода кабелей.

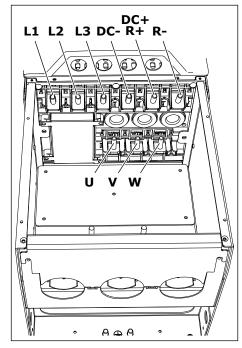


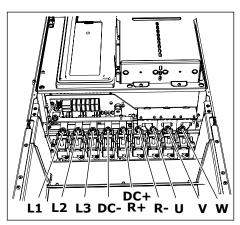
MR8



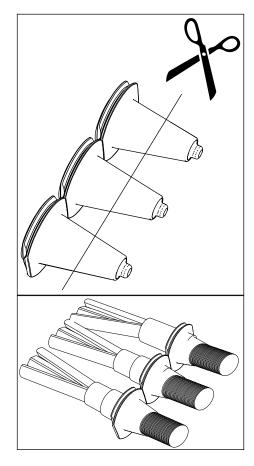
5


5 Только MR9: Выверните винты и снимите уплотнительную крышку.

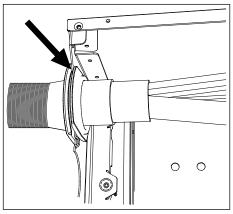

6 Снимите защитный экран ЭМС.


А. Барашковая гайка MR8

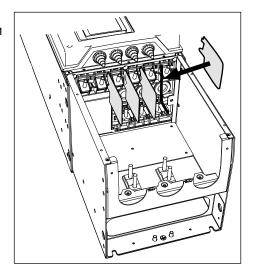
7 Найдите клеммы кабелей двигателя. Используется нестандартное размещение клемм, в частности для типоразмера MR8.

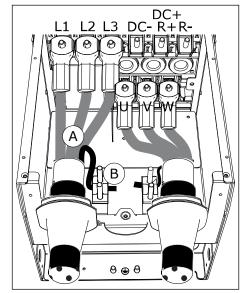


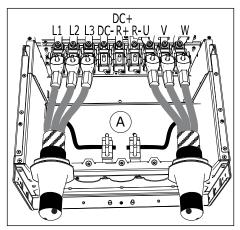
MR8



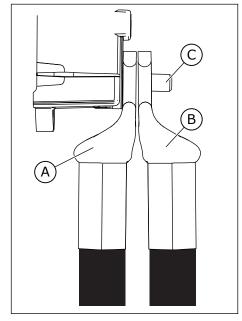
MR9


- 8 Подрежьте резиновые втулки и через образовавшиеся отверстия пропустите кабели.
 - a) Не вырезайте отверстия во втулках шире, чем необходимо для используемых кабелей.
 - b) Если при пропускании кабеля втулки загибаются, для их выпрямления достаточно оттянуть кабель назад.

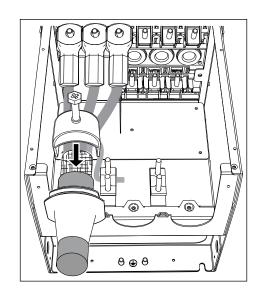

- 9 Установите резиновую втулку и кабель таким образом, чтобы кромка корпуса привода входила в паз резиновой втулки.
 - а) Для выполнения требований степени защиты корпуса IP54 втулка должна плотно прилегать к кабелю. Выведите кабель из втулки таким образом, чтобы его начальный участок был прямым.
 - b) По возможности уплотните соединение с использованием изоляционной ленты или кабельной стяжки.


10 При значительной толщине кабелей во избежание их контакта вставьте между клеммами кабельные изоляторы.

- 11 Подсоедините зачищенные кабели.
 - а) Подсоедините (фазные) провода кабеля электросети, тормоза и двигателя к соответствующим клеммам. Если используется кабель тормозного резистора, подключите его провода к соответствующим клеммам.
 - b) Подключите провод заземления каждого кабеля к клемме заземления с использованием зажима заземления провода заземления.
 - с) Убедитесь в том, что внешний провод заземления подсоединен к шине заземления. См. главу 2.4 Заземление и защита от замыкания на землю.
 - d) Усилия затяжки см. в Табл. 24.

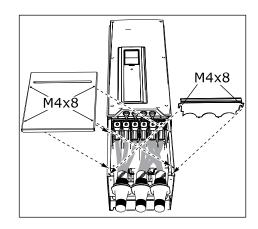


- А. Подключение кабелей
- B. Подключение заземление MR8

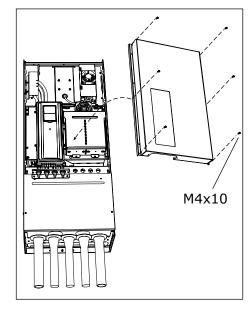


А. Подключение заземление MR9

12 Если в одном разъеме используется несколько кабелей, следите за тем, чтобы кабельные наконечники располагались друг над другом.



- А. Первый кабельный наконечник
- В. Второй кабельный наконечник
- С. Соединитель
- 13 Зачистите экраны всех трех кабелей, чтобы обеспечить их соединение по всей окружности (360 градусов) с зажимом заземления экрана кабеля.



14 Установите на место защитный экран ЭМС. Для приводов типоразмера MR9 установите уплотнительную крышку.

15 Установите пластину для ввода кабелей, а затем крышку кабельного отсека.

16 Для приводов типоразмера MR9 установите крышку привода (кроме случаев, когда нужно сначала подключить цепи управления).

- 17 Убедитесь в том, что провод заземления подключен к двигателю и клеммам, обозначенным символом 🕒 .
 - а) Для обеспечения соответствия требованиям стандарта EN 61800-5-1 следуйте инструкциям, указанным в главе 2.4 Заземление и защита от замыкания на землю.
 - b) Подключите защитный проводник к 1 из винтовых клемм, используя кабельный наконечник и винт М8.

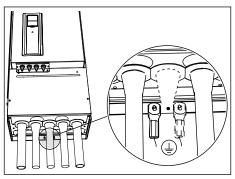


Табл. 24: Моменты затяжки кабельных клемм

Типора змер	Тип	Момент затяжки: клеммы кабеля электросети и кабеля двигателя		Момент затяжки: зажимы заземления экрана кабеля		Момент затяжки: зажимы заземления провода заземления	
		[H·M]	фунт- дюймы	[H·M]	фунт- дюймы	[H·M]	фунт- дюймы
MR8	0140 2 - 0205 2 0140 5 - 0205 5 0080 6 - 0125 6 0080 7 - 0125 7	30	266	1.5	13.3	20	177
MR9	0261 2 - 0310 2 0261 5 - 0310 5 0144 6 - 0208 6 0144 7 - 0208 7	40	266	1.5	13.3	20	177

5.7 МОНТАЖ В СЕТИ ЭЛЕКТРОСНАБЖЕНИЯ С ЗАЗЕМЛЕНИЕМ ФАЗЫ

Заземление фазы допускается для типоразмеров MR7-MR9 с номинальной силой тока 72-310 A при напряжении в сети электроснабжения 380-480 B, а также с номинальной силой тока 75-310 A при напряжении в сети электроснабжения 208-240 B.

В этом случае уровень защиты от электромагнитных помех изменится на С4. См. указания в разделе *7.5 Монтаж в системе типа IT*.

Заземление фазы не допускается для типов приводов типоразмера MR4-MR6) с номинальной силой тока 3,4-61 А при напряжении в сети электроснабжения 380-480 В или с номинальной силой тока 3,7-62 А при напряжении в сети электроснабжения 208-240 В.

Заземление фазы допускается для приводов MR4-6 (напряжение электросети 208–230 В) дальностью до 2000 м.

6 БЛОК УПРАВЛЕНИЯ

6.1 КОМПОНЕНТЫ БЛОКА УПРАВЛЕНИЯ

Блок управления для преобразователей частоты включает в себя стандартные и дополнительные платы. Дополнительные платы подключаются к разъемам на плате управления (см. 6.4 Установка дополнительных плат).

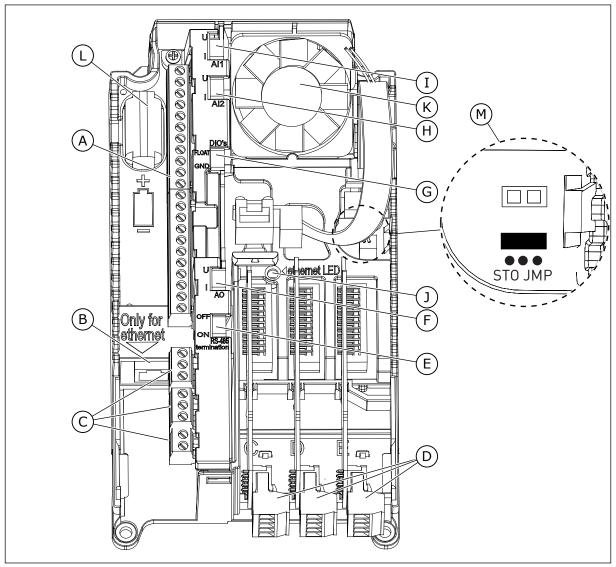


Рис. 24: Компоненты блока управления

- А. Клеммы управления привода для стандартных подключений ввода/ вывода
- B. Подключение сети Ethernet
- С. Клеммы релейной платы для 3 релейных выходов или для 2 релейных выходов и термистора
- D. Дополнительные платы

- E. DIP-переключатель для окончания шины RS485
- F. DIP-переключатель для выбора аналогового выходного сигнала
- G. DIP-переключатель для изоляции цифровых входов от земли
- H. DIP-переключатель для выбора аналогового входного сигнала 2

VACON ∙ 74 БЛОК УПРАВЛЕНИЯ

- I. DIP-переключатель для выбора аналогового входного сигнала 1
- J. Индикатор состояния Ethernetподключения
- К. Вентилятор (только для приводов типоразмера MR4 и MR5 со степенью защиты IP54)
- L. Батарея для часов реального времени
- М. Местонахождение и положение по умолчанию перемычки отключения крутящего момента (STO)

При получении блок управления преобразователя частоты имеет стандартный интерфейс управления. Если в заказе были указаны дополнительные параметры, конфигурация преобразователя частоты будет соответствовать вашему заказу. На следующих страницах вы найдете информацию о клеммах, а также стандартные примеры подключения.

С приводом можно использовать внешний источник питания со следующими характеристиками: +24 В пост. тока ±10 %, минимум 1000 мА. Внешний источник питания подключается к клемме 30. Этого напряжения достаточно для установки параметров и поддержания блока управления в активном состоянии. Однако измерения, связанные с силовой цепью (например, измерения напряжения звена постоянного тока, температуры блока), невозможны, если привод не подключен к сети электроснабжения.

Светодиод состояния привода показывает состояние привода. Светодиод состояния расположен на панели управления под клавиатурой, он показывает 5 различных состояний.

гаол. 25: Состояния светодиода состояния привода

Цвет светодиода	Состояние привода
Медленно мигает	Готов
Зеленый	Вращение
Красный	Отказ
Оранжевый	Сигнал тревоги
Быстро мигает	Загрузка программного обеспечения

6.2 КАБЕЛИ БЛОКА УПРАВЛЕНИЯ

На стандартной плате ввода/вывода имеется 22 фиксированные клеммы управления привода, а на релейной плате — 8 клемм релейной платы. Информацию о стандартных подключениях блока управления и описание сигналов см. в *Puc. 25*.

6.2.1 ВЫБОР КАБЕЛЕЙ УПРАВЛЕНИЯ

В качестве кабелей управления следует использовать экранированные многожильные кабели сечением не менее 0,5 мм². Более подробные сведения о типах кабелей см. в *Табл. 15 Выбор подходящего кабеля*. Для подключения к клеммам релейной платы и к другим клеммам используйте провода сечением не более 2,5 мм².

Табл. 26: Усилия затяжки кабелей управления

Клемма	Винт клеммы	леммы Момент затяжки	
		Н∙м	фунт-дюймы
Все клеммы платы ввода/вывода и релейной платы	M3	0.5	4.5

6.2.2 КЛЕММЫ УПРАВЛЕНИЯ И DIP-ПЕРЕКЛЮЧАТЕЛИ

Здесь приводится краткое описание клемм стандартной платы ввода/вывода и релейной платы. Дополнительную информацию см. в 11 Технические данные цепей управления.

Некоторые клеммы предназначены для сигналов, функции которых выбираются с помощью DIP-переключателей. Для получения дополнительной информации см. 6.2.2.1 Выбор функций клемм с помощью DIP-переключателей.

VACON ⋅ 76 БЛОК УПРАВЛЕНИЯ

*		Станда Клемма	артная плата ввода/і Сигнал	вывода Описание
Потенциометр г	1	+10 Vref	Выход опорного сигнала	
задания 1–10 кОм	2	AI1+	Аналоговый вход, напряжение или ток	
2-проводной передатчик	3	AI1-	Общий аналоговый вход (ток)	Задание частоты
Регулируемая - — - величина	4	AI2+	Аналоговый вход, напряжение или ток	Задание частоты
T = (0)4-20 MA	5	AI2-	Общий аналоговый вход (ток)	
	6	24 В вых.●	Вспомогательное напряжение 24 В	
	7	GND (ЗАЗЕМЛЕНИЕ) Ф	Земля входов/выходов	
	8	DI1	Цифровой вход 1	Пуск в прямом направлении
	9	DI2	Цифровой вход 2	Пуск в обратном направлении
- /	10	DI3	Цифровой вход 3	внешний отказ
	11	ОБЩ	Общая клемма для DI1-DI6	*)
	12	24 В вых.●	Вспомогательное напряжение 24 В	
	13	GND (ЗАЗЕМЛЕНИЕ)	Земля входов/выходов	
	14	DI4	Цифровой вход 4	DI4 DI5 Задание частоты Разомкнут Разомкнут Аналоговый вход 1 Замкнут Разомкнут Предустановленная частота 1
	15	DI5	Цифровой вход 5	Разомкнут Замкнут предустановленная частога 2 Замкнут Замкнут предустановленная частота 2
	16	DI6	Цифровой вход 6	Сброс отказа
	17	ОБЩ	Общая клемма для DI1-DI6	*)
MA ,	18	AO1+	Аналоговый сигнал (выход+)	Выходная частота
	19	AO1-/GND	Аналоговый выход, общий / земля входов /выходов	
	30	+24 В вх.	Вспомогательное входное напряжение 24 В	
	Α	RS485	Последовательная шина, отрицательный провод	Modbus RTU
	В	RS485	Последовательная шина, положительный провод	BACnet, N2
	21	RO1 NC	Релейный	
РАБОТА	22	RO1 CM	выход 1	РАБОТА
L -(\)	23	RO1 NO		
	24	RO2 NC	Релейный	
	25	RO2 CM	выход 2	НЕИСПРАВНОСТЬ
	26	RO2 NO		
	32	RO3 CM	Релейный	готовность
	33	RO3 NO	выход 3	10100110010

Рис. 25: Сигналы клемм управления привода на стандартной плате ввода/вывода и пример подключения. При заказе с дополнительным кодом +SBF4 релейный выход 3 замещается входом термистора.

* = можно изолировать цифровые входы от земли с помощью DIP-переключателя. См. 6.2.2.2 Изоляция цифровых входов от земли.

Предлагается 2 варианта релейной платы.

Со стандарт ввода/в	вывода		Реле	йная плата 1	По
С клеммы № 6 или 12	С клеммы #13	К	лемма	Сигнал	умолчанию
1	!	21	RO1 NC		
РАБО	TA └►	. 22	RO1 CM	Релейны	й РАБОТА
L - (X)) -	23	RO1 NO	выход 1	
		24	RO2 NC		
		25	RO2 CM	Релейны	й неисправность
		26	RO2 NO	выход 2	
		32	RO3 CM	Релейны	й готовность
		33	RO3 NO	выход 3	

Рис. 26: Стандартная релейная плата (+SBF3)

Со стан платы вво	дартной ода/вывода		Реле	йная плата	2	По
С клеммы #12	С клеммы #13	Кл	емма	Сиг	нал	умолчанию
1	ı	21	RO1 NC		. V V	
РАБС)TA	- 22	RO1 CM	выхо	ейный ол 1	РАБОТА
) -	23	RO1 NO		од 1	
		24	RO2 NC			
		25	RO2 CM		ейный 2	НЕИСПРАВНОСТЬ
	_	26	RO2 NO	выхо	од 2	
	<u></u>	- 28	TI1+	Вход	Д	НЕТ ДЕЙСТВИЯ
	L	29	TI1-	терм	истора	ПЕТ ДЕИСТВИЯ

Рис. 27: Дополнительная релейная плата (+SBF4)

ПРИМЕЧАНИЕ!

Вход термистора по умолчанию неактивен.

Для использования входа термистора необходимо сначала активировать программный параметр «Отказ, формируемый термистором». См. руководство по применению.

6.2.2.1 Выбор функций клемм с помощью DIP-переключателей

С помощью DIP-переключателей для указанных клемм можно выбирать 2 варианта. Сами переключатели имеют два положения: вверх и вниз. Положения DIP-переключателей и соответствующие варианты выбора см. в $Puc.\ 28$.

VACON ∙ 78 БЛОК УПРАВЛЕНИЯ

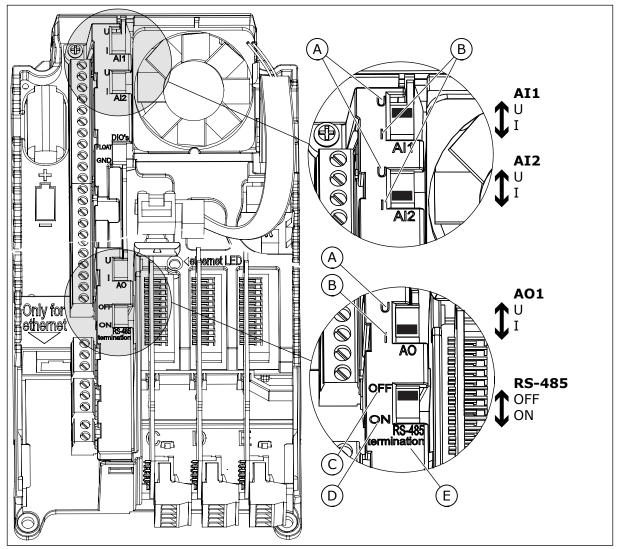


Рис. 28: Положения DIP-переключателей

- А. Сигнал напряжения (U), вход 0-10 В
- В. Сигнал тока (I), вход 0-20 мА
- С. ВЫКЛ.

- D. ВКЛ.
- Е. Окончание шины RS-485

Табл. 27: Положения DIP-переключателей по умолчанию

DIP-переключатель	Положение по умолчанию
AI1	U
AI2	I
A01	Ι
Окончание шины RS485	выкл.

6.2.2.2 Изоляция цифровых входов от земли

Цифровые входы (клеммы 8–10 и 14–16) на стандартных платах ввода/вывода можно изолировать от земли. Для этого измените положение DIP-переключателя на плате управления.

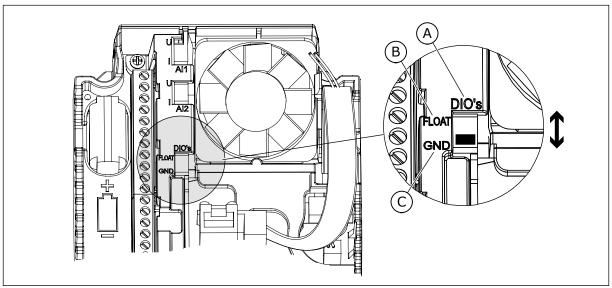


Рис. 29: Для изоляции цифровых входов от земли измените положение этого переключателя.

- А. Цифровые входы
- В. Гальванически развязанные
- С. Подключено к земле (GND) (по умолчанию!)

6.3 ПОДКЛЮЧЕНИЕ ШИНЫ FIELDBUS

Для подключения привода к шине fieldbus можно использовать кабель RS485 или кабель Ethernet. При использовании кабеля RS485 подключайте его к клеммам A и B стандартной платы ввода/вывода. При использовании кабеля Ethernet подключайте его к разъему Ethernet, расположенному под крышкой привода.

VACON · 80 БЛОК УПРАВЛЕНИЯ

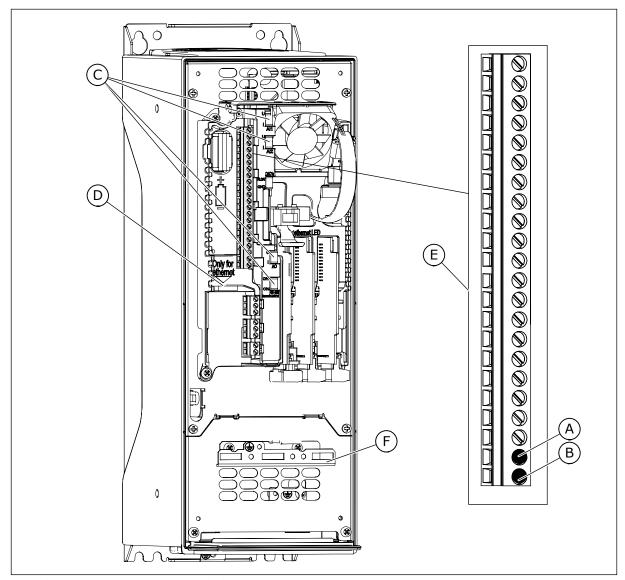


Рис. 30: Разъемы Ethernet и RS485

- A. RS485 клемма A = данные -
- B. RS485 клемма B = данные +
- C. DIP-переключатели

- D. Разъем Ethernet
- Е. Клеммы ввода/вывода
- F. Шина заземления

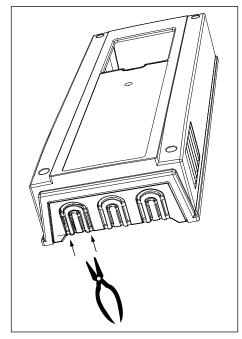
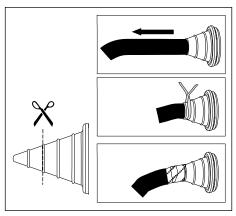
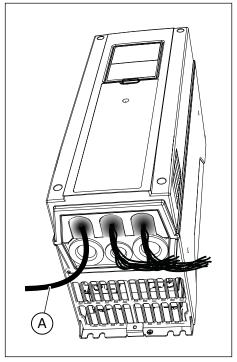

6.3.1 ПОДКЛЮЧЕНИЕ К ШИНЕ FIELDBUS С ИСПОЛЬЗОВАНИЕМ КАБЕЛЯ ETHERNET

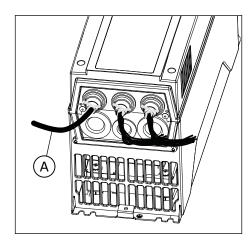
Табл. 28: Данные кабеля Ethernet


Компонент	Описание
Тип разъема	Экранированный разъем RJ45, максимальная длина: 40 мм
Тип кабеля	CAT5e STP
Длина кабеля	Максимум 100 м

КАБЕЛИ ETHERNET

- 1 К этому разъему подключается кабель Ethernet.
- 2 Для приводов со степенью защиты IP21 вырежьте отверстие для кабеля Ethernet в крышке преобразователя частоты. Для приводов со степенью защиты IP54 вырежьте отверстие в резиновой втулке и проведите кабель через это отверстие.
 - а) Если при пропускании кабеля втулки загибаются, для их выпрямления достаточно оттянуть кабель назад.
 - b) Не вырезайте отверстия во втулках шире, чем необходимо для используемых кабелей.
 - с) Выведите кабель из втулки таким образом, чтобы его начальный участок был прямым. По возможности уплотните соединение с использованием изоляционной ленты или кабельной стяжки.


IP21

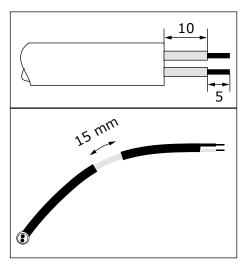

IP54

VACON · 82 БЛОК УПРАВЛЕНИЯ

3 Установите крышку на заднюю часть привода. Расстояние между кабелем Ethernet и кабелем двигателя должно быть не менее 30 см.

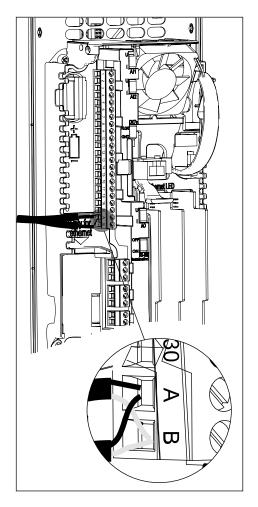
A. Кабель Ethernet в приводах со степенью защиты IP21

A. Кабель Ethernet в приводах со степенью защиты IP54

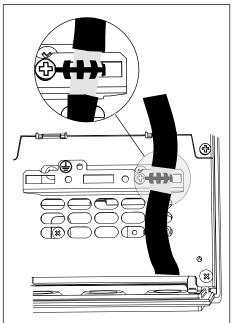

Более подробные сведения см. в руководстве по монтажу используемой шины fieldbus.

6.3.2 ПОДКЛЮЧЕНИЕ К ШИНЕ FIELDBUS С ИСПОЛЬЗОВАНИЕМ КАБЕЛЯ RS485

Табл. 29: Данные кабеля RS485

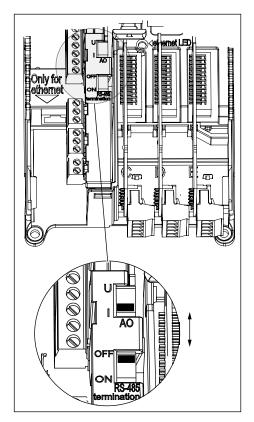

Компонент	Описание
Тип разъема	2,5 мм2
Тип кабеля	STP (экранированная витая пара), тип Belden 9841 или аналогич- ный
Длина кабеля	В соответствии с шиной fieldbus. См. руководство к шине fieldbus.

- 1 Обрежьте серый экран с кабеля RS485 на участке длиной приблизительно 15 мм. Выполните эту операцию для 2 кабелей шины fieldbus.
 - а) Зачистите кабели примерно на 5 мм, чтобы вставить их в клеммы. Длина участков кабелей между шиной и клеммной колодкой не должна превышать 10 мм.
 - b) Зачистите кабель на таком расстоянии от клемм, чтобы можно было прикрепить его к раме кабельным зажимом. Зачищайте кабель на длину не более 15 мм. Не удаляйте алюминиевый экран кабеля.

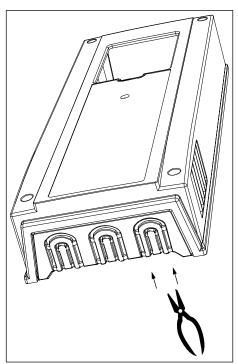


VACON · 84 БЛОК УПРАВЛЕНИЯ

- 2 Подключите кабель к стандартной плате ввода/ вывода на приводе (клеммы A и B).
 - А = отрицательная клемма
 - В = положительная клемма

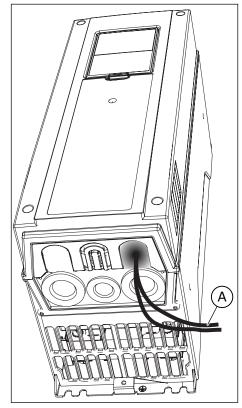


3 Подключите экран кабеля к корпусу привода с помощью кабельного зажима, чтобы обеспечить надежное заземление.

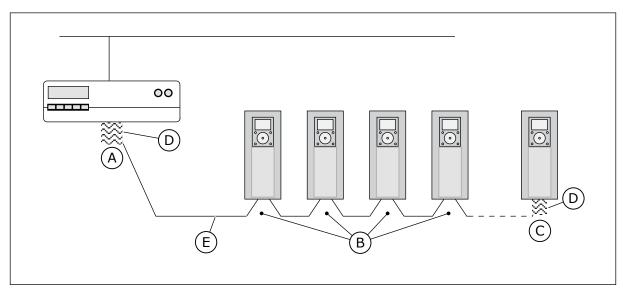


4 Если привод является последним устройством на шине fieldbus, необходимо установить окончание шины.

- a) С правой стороны на панели управления привода найдите DIP-переключатели.
- b) Установите DIP-переключатель окончания шины RS485 в положение ON.
- с) Функция смещения встроена в резистор окончания шины. Сопротивление составляет 220 Ом.



5 Если это не сделано для других кабелей управления, на приводах со степенью защиты IP21 вырежьте в крышке привода отверстие для кабеля RS485.


VACON · 86 БЛОК УПРАВЛЕНИЯ

- 6 Установите крышку на заднюю часть привода. Отведите в сторону кабели RS485.
 - a) Расстояние между кабелем Ethernet, кабелем ввода/вывода, кабелями шины fieldbus и кабелем двигателя должно быть не менее 30 см.
 - b) Отведите кабели шины fieldbus от кабеля двигателя.

A. Кабели шины fieldbus

7 Окончание шины должно устанавливаться для первого и последнего устройства шины fieldbus. Рекомендуется, чтобы первое устройство на шине fieldbus было управляющим устройством.

- А. Согласование шины активировано.
- В. Согласование шины не активировано.
- С. Согласование активировано с помощью DIP-переключателя
- D. Окончание шины. Сопротивление составляет 220 Ом.

E. Шина fieldbus

ПРИМЕЧАНИЕ!

Если выполняется отключение питания до последнего устройства, окончание шины не используется.

6.4 УСТАНОВКА ДОПОЛНИТЕЛЬНЫХ ПЛАТ

осторожно!

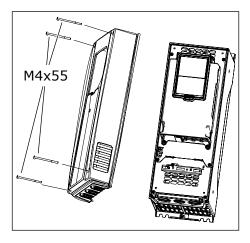
Запрещается устанавливать, снимать или менять дополнительные платы при включенном питании. Это может стать причиной повреждения плат.

Установите дополнительные платы в соответствующие гнезда платы на приводе. См. *Табл. 30*.

VACON ∙ 88 БЛОК УПРАВЛЕНИЯ

Табл. 30: Дополнительные платы и соответствующие гнезда платы

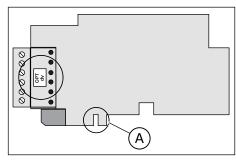
Тип дополнительной платы	Описание дополнительной платы	Правильный разъем или разъемы
OPTB1	Плата расширения ввода/вывода	C, D, E
OPTB2	Релейная плата термисторов	C, D, E
OPTB4	Плата расширения ввода/вывода	C, D, E
OPTB5	Релейная плата	C, D, E
OPTB9	Плата расширения ввода/вывода	C, D, E
OPTBF	Плата расширения ввода/вывода	C, D, E
ОРТВН	Плата измерения температуры	C, D, E
ОРТВЈ	Плата отключения крутящего момента	Е
OPTC4	Плата шины fieldbus LonWorks	D, E
OPTE3	Плата шины fieldbus Profibus DPV1	D, E
OPTE5	Плата шины fieldbus Profibus DPV1 (разъем D-типа)	D, E
OPTE6	Плата шины fieldbus CanOpen	D, E
OPTE7	Плата шины fieldbus DeviceNet	D, E


ПРОЦЕДУРА УСТАНОВКИ

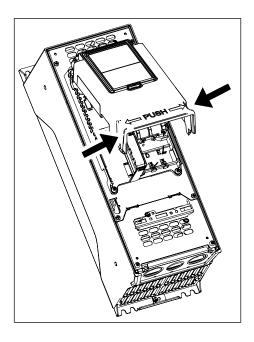
1 Снимите крышку привода переменного тока.

ПРЕДУПРЕЖДЕНИЕ!

Не прикасайтесь к релейным выходам или к клеммам ввода/вывода, предварительно не убедившись в отсутствии напряжения на клеммах. На них может присутствовать опасное напряжение, даже если привод отключен от сети электроснабжения.

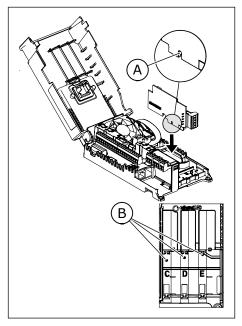


2 При использовании дополнительной платы OPTB или OPTC убедитесь в том, что на ней имеется наклейка с надписью dv (двойное напряжение). Это означает, что дополнительная плата совместима с приводом.


ПРИМЕЧАНИЕ!

Невозможно установить дополнительные платы, которые не совместимы с приводом.

А. Кодовое обозначение на гнезде


3 Чтобы получить доступ к гнездам дополнительной платы, откройте крышку блока управления.

VACON ∙ 90 БЛОК УПРАВЛЕНИЯ

4 Установите дополнительную плату в соответствующий разъем: С, D или E. См. *Табл.* 30.

а) На дополнительной плате используется кодирование слота, поэтому установить дополнительную плату в неправильный разъем не удастся.

- А. Кодовое обозначение на гнезде
- В. Гнезда для дополнительных плат
- 5 Закройте крышку на блоке управления. Установите крышку на заднюю часть привода переменного тока.

6.5 УСТАНОВКА БАТАРЕИ ДЛЯ ЧАСОВ РЕАЛЬНОГО ВРЕМЕНИ (RTC)

Для того чтобы использовать часы реального времени, в привод нужно установить батарею.

- 1 Используйте батарею типа $\frac{1}{2}$ АА напряжением 3,6 В и емкостью 1000-1200 мАч. Например, можно использовать батарею Panasonic BR- $\frac{1}{2}$ АА или Vitzrocell SB-AA02.
- 2 Установите батарею с левой стороны панели управления. См. *Рис. 24 Компоненты блока управления*.

Срок службы батареи составляет приблизительно 10 лет. Дополнительные сведения о часах реального времени см. в руководстве по применению.

6.6 БАРЬЕРЫ С ГАЛЬВАНИЧЕСКИМ РАЗДЕЛЕНИЕМ

Цепи управления изолированы от сети электроснабжения. Клеммы заземления постоянно подключены к заземлению входов/выходов.

Цифровые входы на стандартной плате ввода/вывода могут быть гальванически изолированы от заземления входов/выходов. Для изоляции цифровых входов используйте DIP-переключатель с положениями FLOAT и GND.

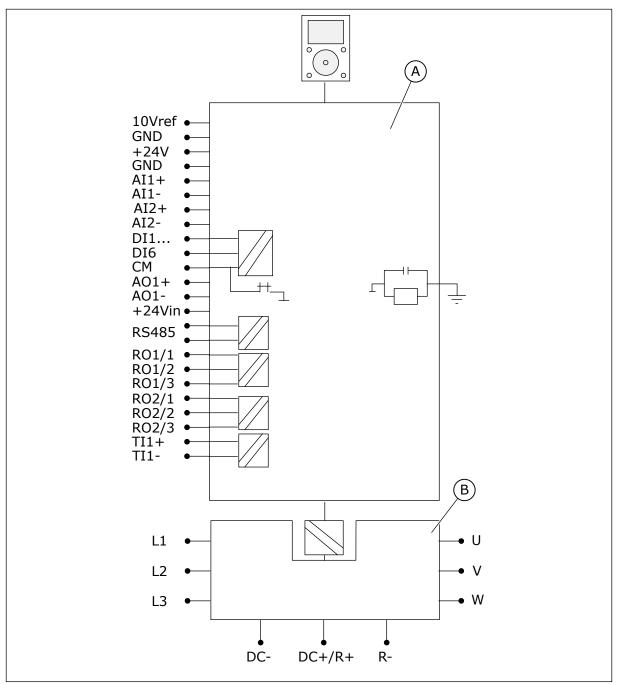


Рис. 31: Барьеры с гальваническим разделением

А. Блок управления

В. Блок питания

7 ВВОД В ЭКСПЛУАТАЦИЮ И ДОПОЛНИТЕЛЬНЫЕ ИНСТРУКЦИИ

7.1 ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ВВОДЕ В ЭКСПЛУАТАЦИЮ

Перед вводом в эксплуатацию ознакомьтесь со следующими предупреждениями.

ПРЕДУПРЕЖДЕНИЕ!

Не прикасайтесь ко внутренним компонентам или к печатным платам, если привод подключен к сети электроснабжения. Эти компоненты находятся под напряжением. Это напряжение может быть очень опасным для человека. Гальванически изолированные клеммы управления привода не находятся под напряжением.

ПРЕДУПРЕЖДЕНИЕ!

Не прикасайтесь к клеммам кабеля двигателя U, V, W, а также к клеммам тормозного резистора и клеммам, на которые выводится напряжение постоянного тока, если привод подключен к сети электроснабжения. Если привод подключен к сети электроснабжения, эти клеммы находятся под напряжением, даже если двигатель не работает.

ПРЕДУПРЕЖДЕНИЕ!

Не подключайте и не отключайте цепи преобразователя частоты, когда он подключен к сети электроснабжения. Присутствует опасное напряжение.

ПРЕДУПРЕЖДЕНИЕ!

Перед выполнением подключений привода сначала отключите его от сети электроснабжения. Подождите 5 минут, прежде чем открывать крышку привода. Затем с помощью измерительного прибора убедитесь в отсутствии напряжения. Клеммы привода остаются под напряжением в течение 5 минут после отключения от сети электроснабжения.

ПРЕДУПРЕЖДЕНИЕ!

Перед выполнением электротехнических работ убедитесь в отсутствии напряжения.

ПРЕДУПРЕЖДЕНИЕ!

Не прикасайтесь к релейным выходам или к клеммам ввода/вывода (кроме клемм ввода/вывода в системе управления). На них может присутствовать опасное напряжение, даже если привод отключен от сети электроснабжения.

ПРЕДУПРЕЖДЕНИЕ!

Перед подключением привода к сети электроснабжения убедитесь в том, что передняя крышка и крышка кабельного отсека привода закрыты. Если привод подключен к сети электроснабжения, на клеммах преобразователя частоты будет присутствовать напряжение.

7.2 ВВОД ПРИВОДА В ЭКСПЛУАТАЦИЮ

Изучите и соблюдайте инструкции по технике безопасности, указанные в разделах 2 Безопасность и 7.1 Техника безопасности при вводе в эксплуатацию.

После монтажа выполните следующие действия.

- Убедитесь в том, что двигатель установлен правильно.
- Убедитесь в том, что клеммы двигателя не подключены к сети электроснабжения.
- Убедитесь в том, что преобразователь частоты и двигатель заземлены.
- Убедитесь в правильности выбора кабеля электросети, кабеля тормозного резистора и кабеля двигателя (см. главу 5.3 Определение параметров и выбор кабелей).
- Кабели управления должны располагаться как можно дальше от кабелей питания. См. главу 5.6 Монтаж кабелей.
- Убедитесь в том, что экраны кабелей (при их наличии) подключены к клемме заземления с маркировкой \oplus .
- Проверьте моменты затяжки всех клемм.
- Убедитесь в том, что к кабелю двигателя не подключены конденсаторы компенсации мощности.
- Убедитесь в том, что кабели не соприкасаются с электрическими компонентами привода.
- Убедитесь в том, что общие входы групп цифровых входов подключены к полюсу +24 В или заземленному полюсу клеммы управления привода или внешнего источника питания.
- Проверьте качество и количество охлаждающего воздуха. См. главу 4.4 Охлаждение и Табл. 14 Требуемый объем охлаждающего воздуха.
- Убедитесь в том, что на внутренних поверхностях преобразователя частоты нет конденсата.
- Убедитесь, что в зоне установки нет лишних предметов.
- Перед подключением привода к сети электроснабжения проверьте правильность установки, а также состояние всех предохранителей и других защитных устройств.

7.3 УПРАВЛЕНИЕ РАБОТОЙ ДВИГАТЕЛЯ

7.3.1 ПРОВЕРКИ, ВЫПОЛНЯЕМЫЕ ПЕРЕД ЗАПУСКОМ ДВИГАТЕЛЯ

Перед запуском двигателя выполните следующие проверки.

- Убедитесь в том, что все переключатели пуска/останова, подключенные к клеммам управления привода, находятся в положении останова.
- Убедитесь в возможности безопасного запуска двигателя.
- Активируйте мастер запуска. Изучите руководство по применению используемого преобразователя частоты.
- Установите максимальное задание частоты (т. е. максимальную скорость двигателя) таким образом, чтобы установленное значение согласовывалось с двигателем и с устройством, подключенным к двигателю.

7.4 ИЗМЕРЕНИЕ ИЗОЛЯЦИИ КАБЕЛЯ И ДВИГАТЕЛЯ

Выполните эти проверки в случае необходимости.

Проверка изоляции кабеля двигателя

- 1. Отсоедините кабель двигателя от клемм U, V и W привода и от двигателя.
- 2. Измерьте сопротивление изоляции кабеля двигателя между проводниками 1 и 2, между проводниками 1 и 3, а также между фазовыми проводниками 2 и 3.
- 3. Измерьте сопротивление изоляции между каждым фазовым проводником и проводом заземления.
- 4. Сопротивление изоляции должно составлять не менее 1 МОм при температуре окружающего воздуха 20°C.

Проверка изоляции кабеля электросети

- 1. Отсоедините кабель электросети от клемм L1, L2 и L3 привода и от сети электроснабжения.
- 2. Измерьте сопротивление изоляции кабеля электросети между фазовыми проводниками 1 и 2, между фазовыми проводниками 1 и 3, а также между фазовыми проводниками 2 и 3.
- 3. Измерьте сопротивление изоляции между каждым фазовым проводником и проводом заземления.
- 4. Сопротивление изоляции должно составлять не менее 1 МОм при температуре окружающего воздуха 20°C.

Проверка изоляции двигателя

- 1. Отсоедините кабель двигателя от двигателя.
- 2. Разомкните перемычки в соединительной коробке двигателя.
- 3. Измерьте сопротивление изоляции каждой обмотки двигателя. Измерительное напряжение должно быть не менее номинального напряжения двигателя, но не должно превышать 1000 В.
- 4. Сопротивление изоляции должно составлять не менее 1 МОм при температуре окружающего воздуха 20°C.
- 5. Соблюдайте инструкции изготовителя двигателя.

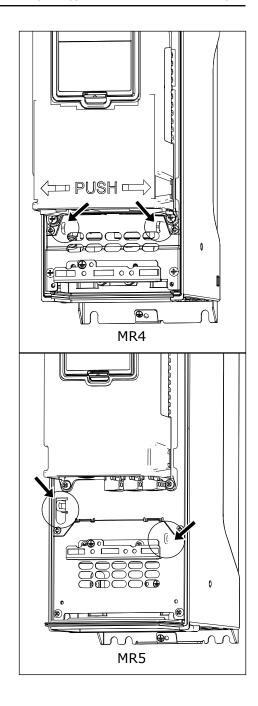
7.5 МОНТАЖ В СИСТЕМЕ ТИПА ІТ

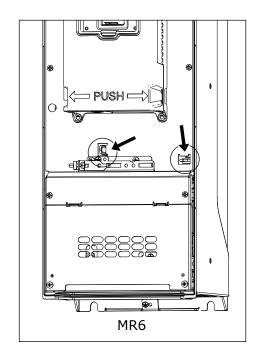
Если используется питающая сеть электроснабжения типа IT (с заземлением через импеданс), преобразователь частоты должен иметь защиту от электромагнитных помех класса C4. Если привод имеет защиту от электромагнитных помех класса C2 или C3, необходимо изменить эту защиту на C4. Для этого снимите электромагнитные перемычки.

ПРЕДУПРЕЖДЕНИЕ!

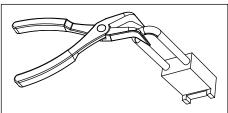
Не вносите какие-либо изменения в конфигурацию преобразователя частоты, если он подключен к сети электроснабжения. Если привод подключен к сети электроснабжения, на компонентах преобразователя частоты будет присутствовать напряжение.

осторожно!

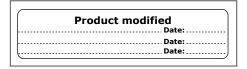

Перед подключением преобразователя частоты к сети электроснабжения убедитесь, что используется правильный уровень электромагнитных помех. Несоответствующий уровень электромагнитных помех может привести к повреждению привода.


7.5.1 ПЕРЕМЫЧКА ЭМС В MR4, MR5 И MR6

Измените уровень защиты от электромагнитных помех преобразователя частоты на С4.

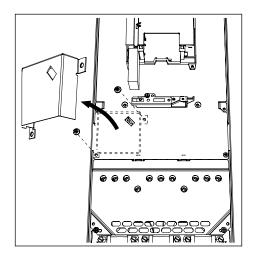

- 1 Снимите крышку преобразователя частоты.
- 2 В приводах типоразмера MR4 и MR5 для доступа к электромагнитным перемычкам нужно будет снять крышку кабельного отсека.

3 Найдите электромагнитные перемычки, соединяющие встроенные фильтры радиочастотных помех с землей.

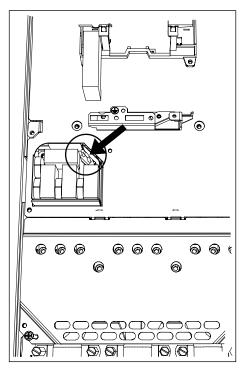


4 Для отсоединения фильтров РЧ-помех от заземления снимите электромагнитные перемычки. Извлеките перемычку ЭМС с помощью инструмента.

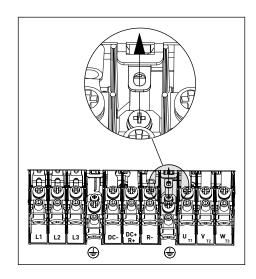
5 После внесения изменений напишите на этикетке внесения изменений «Изменен уровень электромагнитных помех» и укажите дату. Если этикетка еще не установлена, закрепите ее на приводе возле паспортной таблички.

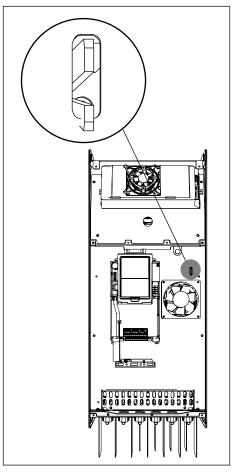


7.5.2 ТИПОРАЗМЕРЫ MR7 И MR8


Измените уровень защиты от электромагнитных помех преобразователя частоты на С4.

1 Снимите крышку преобразователя частоты.

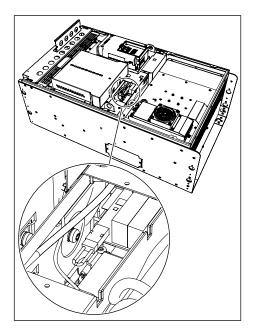

2 Найдите коробку регулирования ЭМС. Отвинтите винты с крышки коробки для доступа к электромагнитной перемычке, регулирующей степень защиты по ЭМС.


3 Снимите электромагнитную перемычку. Установите на место крышку коробки для доступа к перемычке, регулирующей степень защиты по ЭМС.

4 В приводе типоразмера MR7 найдите шину заземления по постоянному току между клеммами R- и U и отсоедините ее от корпуса, вывернув винт M4.

5 В приводе типоразмера MR8 найдите заземляющий рычаг и нажмите его вниз.

6 После внесения изменений напишите на этикетке внесения изменений «Изменен уровень электромагнитных помех» и укажите дату. Если этикетка еще не установлена, закрепите ее на приводе возле паспортной таблички.

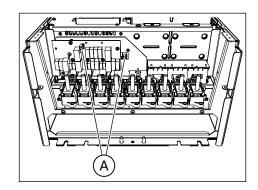

Product modified	
	Date:
	Date:
	Date:

7.5.3 ТИПОРАЗМЕР MR9

Чтобы изменить уровень защиты преобразователя частоты от электромагнитных помех, найдите необходимые перемычки ЭМС. Чтобы изменить уровень электромагнитных помех с С2 или С3 на С4, извлеките перемычки ЭМС. Чтобы изменить уровень электромагнитных помех с С4 на С2 или С3, установите перемычки ЭМС. Запасные электромагнитные перемычки находятся в пакете с дополнительными принадлежностями.

КАК НАЙТИ ЭЛЕКТРОМАГНИТНУЮ ПЕРЕМЫЧКУ 1

- 1 Снимите крышку преобразователя частоты.
- 2 Снимите крышку вентилятора.
- 3 В приводе типоразмера IP54 нужно также снять вентилятор.
- 4 Найдите разъемы для установки перемычек за вентилятором.



5 В случае изменения уровня электромагнитных помех напишите на этикетке внесения изменений «Изменен уровень электромагнитных помех» и укажите дату. Если этикетка еще не установлена, закрепите ее на приводе возле паспортной таблички.

КАК НАЙТИ ЭЛЕКТРОМАГНИТНЫЕ ПЕРЕМЫЧКИ 2 И 3

1 Снимите крышку расширительной коробки, защитный щиток и плату ввода/вывода с платой втулок ввода/вывода. 2 Найдите 2 электромагнитные перемычки на плате ЭМС. Они расположены отдельно друг от друга.

3 В случае изменения уровня электромагнитных помех напишите на этикетке внесения изменений «Изменен уровень электромагнитных помех» и укажите дату. Если этикетка еще не установлена, закрепите ее на приводе возле паспортной таблички.

Product mo	dified
 	Date:
 	Date:
	Date:

7.6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Чтобы убедиться в правильности работы привода и продлить срок его службы, рекомендуется периодически проводить техническое обслуживание. Интервалы между операциями технического обслуживания указаны в таблице.

Менять главные конденсаторы не нужно, поскольку в приводе используются тонкопленочные конденсаторы.

Табл. 31: Интервалы между операциями технического обслуживания и выполняемые действия

Интервал между операциями	Действия по техническому обслуживанию
Регулярно	Проверьте моменты затяжки клемм. Проверьте фильтры.
от 6 до 24 месяцев (периодичность будет разной для разных условий).	Проверьте клеммы кабеля электросети, клеммы кабеля двигателя и клеммы управления привода. Убедитесь в правильности работы вентилятора охлаждения. Убедитесь в том, что на клеммах, шинах или на других поверхностях нет следов коррозии. Если привод установлен в шкафу, проверьте фильтры в дверцах.
24 месяца (периодичность будет разной для разных условий).	Очистите радиатор и охлаждающий туннель.
3-6 лет	Замените внутренний вентилятор (для приводов типоразмера IP54).
6–10 лет	Замените главный вентилятор.
10 лет	Замените батарею в часах реального времени (RTC).

8 TEXHUYECKUE XAPAKTEPИСТИКИ, VACON® 100

8.1 НОМИНАЛЬНЫЕ ЗНАЧЕНИЯ МОЩНОСТИ ПРИВОДА ПЕРЕМЕННОГО ТОКА

8.1.1 НАПРЯЖЕНИЕ ЭЛЕКТРОСЕТИ 208-240 В

Табл. 32: Номинальные значения мощности привода Vacon® 100 при напряжении электросети 208–240 В, 50–60 Гц, 3~

Типора	Тип привод а	Допусти	иая нагруз	ка		Мощность на валу двигателя				
змер		Низк.*		Высок.*		Макс. ток Ic 2 c	Сеть электроснабжен ия с напряжением 230 В		Сеть электроснабжен ия с напряжением 230 В	
		Непрер ывный ток IL [A]	Ток перегр узки 10 % [A]	Непрер ывный ток IH [A]	Ток перегр узки 50 % [A]		Перегр узка 10 % при 40 °С [кВт]	Перегр узка 50 % при 50°С [кВт]	Перегр узка 10 % при 40 °С [л. с.]	Перегр узка 50 % при 50 °С [л. с.]
MR4	0003	3.7	4.1	2.6	3.9	5.2	0.55	0.37	0.75	0.5
	0004	4.8	5.3	3.7	5.6	7.4	0.75	0.55	1.0	0.75
	0007	6.6	7.3	4.8	7.2	9.6	1.1	0.75	1.5	1.0
	8000	8.0	8.8	6.6	9.9	13.2	1.5	1.1	2.0	1.5
	0011	11.0	12.1	8.0	12.0	16.0	2.2	1.5	3.0	2.0
	0012	12.5	13.8	9.6	16.5	19.6	3.0	2.2	4.0	3.0
MR5	0018	18.0	19.8	12.5	18.8	25.0	4.0	3.0	5.0	4.0
	0024	24.0	26.4	18.0	27.0	36.0	5.5	4.0	7.5	5.0
	0031	31.0	34.1	25.0	37.5	46.0	7.5	5.5	10.0	7.5
MR6	0048	48.0	52.8	31.0	46.5	62.0	11.0	7.5	15.0	10.0
	0062	62.0	68.2	48.0	72.0	96.0	15.0	11.0	20.0	15.0
MR7	0075	75.0	82.5	62.0	93.0	124.0	18.5	15.0	25.0	20.0
	0088	88.0	96.8	75.0	112.5	150.0	22.0	18.5	30.0	25.0
	0105	105.0	115.5	88.0	132.0	176.0	30.0	22.0	40.0	30.0

Табл. 32: Номинальные значения мощности привода Vacon® 100 при напряжении электросети 208–240 В, 50–60 Гц, 3~

Типора	Тип	Допустин	иая нагруз	ка		Мощность на валу двигателя				
змер	привод а	Низк.*		Высок.*		Макс. ток Ic 2 c	Сеть электроснабжен ия с напряжением 230 В		Сеть электроснабжен ия с напряжением 230 В	
		Непрер ывный ток IL [A]	Ток перегр узки 10 % [A]	Непрер ывный ток IH [A]	Ток перегр узки 50 % [A]		Перегр узка 10 % при 40 °С [кВт]	Перегр узка 50 % при 50 °С [кВт]	Перегр узка 10 % при 40 °С [л. с.]	Перегр узка 50 % при 50 °С [л. с.]
MR8	0140	140.0	154.0	114.0	171.0	210.0	37.0	30.0	50.0	40.0
	0170	170.0	187.0	140.0	210.0	280.0	45.0	37.0	60.0	50.0
	0205	205.0	225.5	170.0	255.0	340.0	55.0	45.0	75.0	60.0
MR9	0261	261.0	287.1	211.0	316.5	410.0	75.0	55.0	100.0	75.0
	0310	310.0	341.0	251.0	376.5	502.0	90.0	75.0	125.0	100.0

^{* =} см. главу 8.1.3 Перегрузочная способность.

ПРИМЕЧАНИЕ!

Номинальные токи при данной температуре окружающего воздуха (в главе 8.2 Vacon® 100 — технические характеристики) достигаются только в случае, если частота коммутации не равна или меньше частоты коммутации, устанавливаемой на заводе-изготовителе (по умолчанию).

Если в системе присутствуют циклические нагрузки, например лифты или лебедки, для получения более подробных сведений о параметрах обратитесь к производителю.

8.1.2 НАПРЯЖЕНИЕ ЭЛЕКТРОСЕТИ 380-500 В

Табл. 33: Номинальные значения мощности привода Vacon® 100 при напряжении электросети 380–500 В, 50–60 Гц, 3~

Типора	Тип привод а	Допустимая нагрузка					Мощность на валу двигателя			
змер		Низк.*		Высок.*		Макс. ток I _C 2 c	Сеть электроснабжен ия с напряжением 400 В		Сеть электроснабжен ия с напряжением 480 В	
		Непрер ывный ток I∟ [A]	Ток перегр узки 10 % [A]	Непрер ывный ток ІН [А]	Ток перегр узки 50 % [А]		Перегр узка 10 % при 40 ℃ [кВт]	Перегр узка 50 % при 50 ℃ [кВт]	Перегр узка 10 % при 40 ℃ [л. с.]	Перегр узка 50 % при 50°С [л. с.]
MR4	0003	3.4	3.7	2.6	3.9	5.2	1.1	0.75	1.5	1.0
	0004	4.8	5.3	3.4	5.1	6.8	1.5	1.1	2.0	1.5
	0005	5.6	6.2	4.3	6.5	8.6	2.2	1.5	3.0	2.0
	0008	8.0	8.8	5.6	8.4	11.2	3.0	2.2	4.0	3.0
	0009	9.6	10.6	8.0	12.0	16.0	4.0	3.0	5.0	4.0
	0012	12.0	13.2	9.6	14.4	19.2	5.5	4.0	7.5	5.0
MR5	0016	16.0	17.6	12.0	18.0	24.0	7.5	5.5	10.0	7.5
	0023	23.0	25.3	16.0	24.0	32.0	11.0	7.5	15.0	10.0
	0031	31.0	34.1	23.0	34.5	46.0	15.0	11.0	20.0	15.0
MR6	0038	38.0	41.8	31.0	46.5	62.0	18.5	15.0	25.0	20.0
	0046	46.0	50.6	38.0	57.0	76.0	22.0	18.5	30.0	25.0
	0061	61.0	67.1	46.0	69.0	92.0	30.0	22.0	40.0	30.0
MR7	0072	72.0	79.2	61.0	91.5	122.0	37.0	30.0	50.0	40.0
	0087	87.0	95.7	72.0	108.0	144.0	45.0	37.0	60.0	50.0
	0105	105.0	115.5	87.0	130.5	174.0	55.0	45.0	75.0	60.0
MR8	0140	140.0	154.0	105.0	157.5	210.0	75.0	55.0	100.0	75.0
	0170	170.0	187.0	140.0	210.0	280.0	90.0	75.0	125.0	100.0
	0205	205.0	225.5	170.0	255.0	340.0	110.0	90.0	150.0	125.0
MR9	0261	261.0	287.1	205.0	307.5	410.0	132.0	110.0	200.0	150.0
	0310	310.0	341.0	251.0	376.5	502.0	160.0	132.0	250.0	200.0

* = см. главу 8.1.3 Перегрузочная способность.

ПРИМЕЧАНИЕ!

Номинальные токи при данной температуре окружающего воздуха (в главе 8.2 Vacon® 100 — технические характеристики) достигаются только в случае, если частота коммутации не равна или меньше частоты коммутации, устанавливаемой на заводе-изготовителе (по умолчанию).

Если в системе присутствуют циклические нагрузки, например лифты или лебедки, для получения более подробных сведений о параметрах обратитесь к производителю.

8.1.3 ПЕРЕГРУЗОЧНАЯ СПОСОБНОСТЬ

Низкая перегрузка означает, что если требуется постоянный ток на уровне 110 % (I_L) в течение 1 минуты на протяжении каждых 10 минут, то остальные 9 минут его значение должно составлять примерно 98 % от I_L или ниже. Благодаря этому выходной ток не будет превышать I_L на протяжении рабочего цикла.

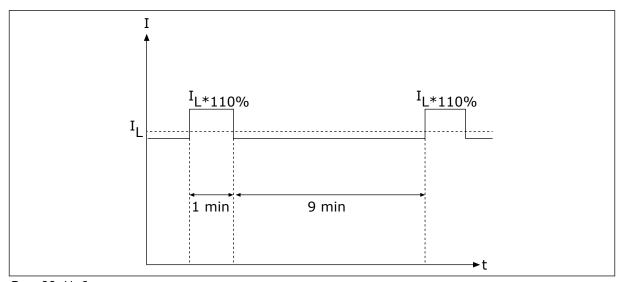


Рис. 32: Небольшая перегрузка

Высокая перегрузка означает, что если требуется постоянный ток на уровне 150 % (I_H) в течение 1 минуты на протяжении каждых 10 минут, то остальные 9 минут его значение должно составлять примерно 92 % от I_H или ниже. Благодаря этому выходной ток не будет превышать I_H на протяжении рабочего цикла.

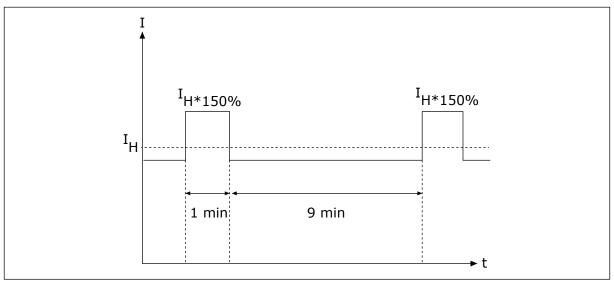


Рис. 33: Большая перегрузка

Более подробные сведения см. в стандарте IEC61800-2 (IEC:1998).

8.1.4 НОМИНАЛЬНЫЕ ЗНАЧЕНИЯ ТОРМОЗНЫХ РЕЗИСТОРОВ

Убедитесь, что сопротивление выше, чем указанное минимальное сопротивление. Предельно допустимая мощность должна соответствовать области применения.

Табл. 34: Рекомендуемые типы тормозных резисторов и расчетные сопротивления привода

Типоразмер	Рабочий цикл	Тип тормозного резистора	Сопротивление [Ω]	
MR4	Легкий режим	BRR 0022 LD 5	63.0	
	Тяжелый режим	BRR 0022 HD 5	63.0	
MR5	Легкий режим	BRR 0031 LD 5	41.0	
	Тяжелый режим	BRR 0031 HD 5	41.0	
MR6	Легкий режим	BRR 0045 LD 5	21.0	
	Тяжелый режим	BRR 0045 HD 5	21.0	
MR7	Легкий режим	BRR 0061 LD 5	14.0	
	Тяжелый режим	BRR 0061 HD 5	14.0	
MR8	Легкий режим	BRR 0105 LD 5	6.5	
	Тяжелый режим	BRR 0105 HD 5	6.5	
MR9	Легкий режим	BRR 0300 LD 5	3.3	
	Тяжелый режим	BRR 0300 HD 5	3.3	

- Легкий рабочий цикл при цикличном использовании тормозного резистора (один импульс LD в течение 120 секунд). Резистор для легкого режима работы соответствует изменению от нуля до полной мощности в течение 5 секунд.
- Тяжелый рабочий цикл при цикличном использовании тормозного резистора (один импульс HD в течение 120 секунд). Резистор для тяжелого режима работы соответствует торможению с полной мощностью в течение 3 секунд и с уменьшением мощности до нуля в течение 7 секунд.

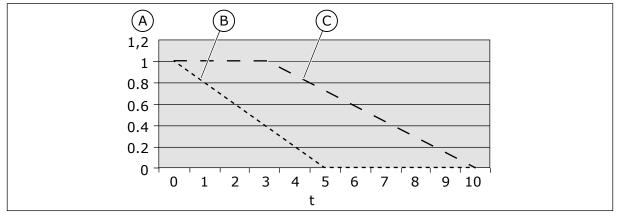


Рис. 34: Импульсы LD и HD

А. Относительная мощность

В. Легкий режим

С. Тяжелый режим

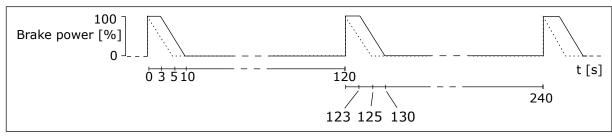


Рис. 35: Рабочие циклы импульсов LD и HD

Табл. 35: Минимальное сопротивление и мощность торможения, напряжение электросети: 208–240 В

Напряжение электросети 208–240 В, 50/60 Гц, 3 фазы					
Типоразмер	Минимальное сопротивление торможения [Ω]	Мощность торможения* при напряжении 405 В пост. тока [кВт]			
MR4	30.0	2.6			
MR5	20.0	3.9			
MR6	10.0	7.8			
MR7	5.5	11.7			
MR8	3.0	25.2			
MR9	1.4	49.7			

^{* =} при использовании рекомендуемых типов тормозных резисторов.

Табл. 36: Минимальное сопротивление и мощность торможения, напряжение электросети: 380–500 В

Напряжение электросети: 380–500 В, 50/60 Гц, 3 фазы					
Типоразмер	Минимальное сопротивление торможения [Ω]	Мощность торможения* при напряжении 845 В пост. тока [кВт]			
MR4	63.0	11.3			
MR5	41.0	17.0			
MR6	21.0	34.0			
MR7	14.0	51.0			
MR8	6.5	109.9			
MR9	3.3	216.4			

^{* =} при использовании рекомендуемых типов тормозных резисторов.

8.2 VACON® 100 — ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Табл. 37: Технические характеристики преобразователя частоты Vacon® 100

Технический параметр или функция		Технические характеристики
	Входное напряжение U _в	208-240 В, 380-500 В, от -10 до +10 %
	Входная частота	50–60 Гц, от -5 до +10 %
	Подключение к сети электроснабжения	Один раз в минуту или реже
Подключение к сети электроснабжения	Задержка пуска	6 c (MR4-MR6), 8 c (MR7-MR9)
	Сеть электроснабжения	 Типы сетей электроснабжения: TN, TT и IT Ток короткого замыкания: Максимальный ток короткого замыкания не должен превышать 100 кА.
	Выходное напряжение	0-Ив
Подключение двигателя	Длительный выходной ток	IL: Температура окружающего воздуха: не более +40 °С, перегрузочная способность: 1.1 х IL (1 мин/10 мин) IH: Температура окружающего воздуха: не более +50 °С, перегрузочная способность: 1.5 х IH (1 мин/10 мин)
	Выходная частота	0–320 Гц (стандартная)
	Разрешение по частоте	0,01 Гц

Табл. 37: Технические характеристики преобразователя частоты Vacon® 100

Технический параметр ил	и функция	Технические характеристики
Качество управления	Частота переключения (см. параметр РЗ.1.2.3)	МR4-MR6: 1,5-10 кГц Значения по умолчанию • MR4-MR6: 6 кГц (исключения: 0012 2, 0031 2, 0062 2, 0012 5, 0031 5 и 0061 5 – 4 кГц) МR7-MR9: 1,5-6 кГц Значения по умолчанию • MR7: 4 кГц • MR8: 3 кГц • MR9: 2 кГц При перегрузке номинальная частота автоматического переключения снижается.
	Задание частоты Аналоговый вход Задание с панели упра- вления	Разрешение 0,1 % (10 бит), погрешность ±1 % Разрешение 0,01 Гц
	Точка ослабления поля	8–320 Гц
	Время разгона	0,1-3000 c
	Время торможения	0,1-3000 c

Табл. 37: Технические характеристики преобразователя частоты Vacon® 100

Технический параметр і	или функция	Технические характеристики
	Рабочая температура окружающего воздуха	IL ток: от -10 °C (без инея) до +40 °C IH ток: −10 °C (без инея)+50 °C Максимальная рабочая температура: +50 °C
	Температура хранения	От -40 °C до +70 °C
	Относительная влаж- ность	0–95 % Rн, без конденсации, без коррозии
Условия окружающей среды	Качество воздуха: химические пары твердые частицы 	Проведены испытания в соответствии с тестом Ке стандарта IEC 60068-2-60: Испытание на коррозию при воздействии потока газовой смеси, метод 1 (H2S [сероводород] и S02 [диоксид сульфида]) Конструкция соответствует следующим требованиям: • IEC 60721-3-3, устройство в работе, класс 3C3 (IP21/UL Туре 1 модели 3C2) • IEC 60721-3-3, устройство в процессе эксплуатации, класс 3S2.
	Высота над уровнем моря	100 % нагрузочная способность (без снижения номинальных параметров) до 1000 м Снижение номинальных параметров на 1 % на каждые 100 м выше 1000 м Макс. высота: • 208-240 В: 4000 м (системы ТN и IT) • 380-500 В: 4000 м (системы ТN и IT) Напряжение релейных выходов: • До 3000 м: Допускается до 240 В • 3000-4000 м: Допускается до 120 В Заземление фазы допускается для приводов МR4-6 (напряжение электросети 208-230 В) дальностью до 2000 м (см. главу 5.7 Монтаж в сети электроснабжения с заземлением фазы).

Табл. 37: Технические характеристики преобразователя частоты Vacon® 100

Технический параметр ил	ти функция	Технические характеристики	
	Вибрация EN61800-5-1/ EN60068-2-6	5–150 Гц Амплитуда перемещения 1 мм (амплитуда) в диапа- зоне 5–15,8 Гц (MR4–MR9) Макс. амплитуда ускорения 1 G в диапазоне 15,8– 150 Гц (MR4–MR9)	
Условия окружающей среды	Ударное воздей- ствие EN60068-2-27	Испытание на падение ИБП (для ИБП соответствую- щего веса) Хранение и транспортировка: макс. 15 g, 11 мс (в упаковке)	
	Степень защиты корпуса	IP21/Type 1: по всему диапазону мощности в кВт/л. с. IP54/Type 12: дополнительно	
		ПРИМЕЧАНИЕ! Для устройств IP54/Type 12 требуется адаптер панели управления.	
0.40 (Помехоустойчивость	Соответствует стандарту EN61800-3 (2004), 1е и 2е условия эксплуатации	
ЭМС (при установках по умолчанию)	Излучение помех	+EMC2: EN61800-3 (2004), категория С2. Привод можно модифицировать для сетей электроснабжения ІТ. См. главу 7.5 Монтаж в системе типа ІТ.	
	Средний уровень шума (мин-макс), уровень зву-ковой мощности, дБ(А)	Звуковое давление зависит от скорости вентилятора охлаждения, который регулируется в соответствии с температурой привода.	
Уровень шума		MR4: 45-56 MR5: 57-65 MR6: 63-72 MR7: 43-73 MR8: 58-73 MR9: 54-75	
Стандарты и сертифи- каты безопасности		EN 61800-5-1 (2007), СЕ (более детальные сведения по соответствию стандартам приведены в паспортной табличке привода).	

Табл. 37: Технические характеристики преобразователя частоты Vacon® 100

Технический параметр ил	и функция	Технические характеристики
	Порог отключения при повышенном напряже- нии	Приводы с напряжением питания 240 В: 456 В пост. тока Приводы с напряжением питания 500 В: 911 Вольт постоянного тока
	Порог отключения при пониженном напряжении	Зависит от напряжения электросети (напряжение электросети х 0,8775):
		Напряжение электросети 240 В: порог отключения 211 В пост. тока Напряжение электросети 400 В: порог отключения 351 В пост. тока Напряжение электросети 500 В: порог отключения 421 В пост. тока
	Защита от замыкания на землю	Да
элементы защиты	Контроль сети электрос- набжения	Да
элененты защиты	Контроль фаз двигателя	Да
	Защита от перегрузки по току	Да
	Защита от перегрева инвертора	Да
	Защита от перегрузки двигателя	Да * Защита от перегрузки двигателя активируется при 110 % от тока полной нагрузки.
	Защита от опрокидыва- ния двигателя	Да
	Защита от недогрузки двигателя	Да
	Защита от короткого замыкания источников напряжения +24 В и опорного напряжения +10 В	Да

^{* =} для соответствия функций термопамяти и удержания памяти двигателя требованиям UL 61800-5-1 необходимо использовать в системе программное обеспечение версии FW0072V007 (или выше). При использовании программного обеспечения более старой версии необходимо, чтобы при установке защита двигателя от перегрева отвечала требованиям UL.

9 TEXHUYECKUE XAPAKTEPUCTUKU, VACON® 100 FLOW

9.1 НОМИНАЛЬНЫЕ ЗНАЧЕНИЯ МОЩНОСТИ ПРИВОДА ПЕРЕМЕННОГО ТОКА

9.1.1 НАПРЯЖЕНИЕ ЭЛЕКТРОСЕТИ 208-240 В

Табл. 38: Номинальные значения мощности привода Vacon® 100 FLOW при напряжении электросети 208−240 В, 50−60 Гц, 3~

Типоразмер	Тип привода	Допустимая на	Допустимая нагрузка*			залу
		Непрерывны й ток I∟ [А]	Ток перегрузки 10 % [A]	Макс. ток IS 2 c	Сеть электроснаб жения с напряжение м 230 В	Сеть электроснаб жения с напряжение м 230 В
					Перегрузка 10 % при 40 ℃ [кВт]	Перегрузка 10 % при 40 ℃ [л. с.]
MR4	0003	3.7	4.1	5.2	0.55	0.75
	0004	4.8	5.3	7.4	0.75	1.0
	0007	6.6	7.3	9.6	1.1	1.5
	0008	8.0	8.8	13.2	1.5	2.0
	0011	11.0	12.1	16.0	2.2	3.0
	0012	12.5	13.8	19.6	3.0	4.0
MR5	0018	18.0	19.8	25.0	4.0	5.0
	0024	24.0	26.4	36.0	5.5	7.5
	0031	31.0	34.1	46.0	7.5	10.0
MR6	0048	48.0	52.8	62.0	11.0	15.0
	0062	62.0	68.2	96.0	15.0	20.0
MR7	0075	75.0	82.5	124.0	18.5	25.0
	0088	88.0	96.8	150.0	22.0	30.0
	0105	105.0	115.5	176.0	30.0	40.0

Табл. 38: Номинальные значения мощности привода Vacon® 100 FLOW при напряжении электросети 208–240 В, 50–60 Гц, 3~

Типоразмер	Тип привода	Допустимая нагрузка*			Мощность на валу двигателя		
		Непрерывны й ток I∟ [А]	Ток перегрузки 10 % [A]	Макс. ток IS 2 c	Сеть электроснаб жения с напряжение м 230 В	Сеть электроснаб жения с напряжение м 230 В	
					Перегрузка 10 % при 40 ℃ [кВт]	Перегрузка 10 % при 40 ℃ [л. с.]	
MR8	0140	143.0	154.0	210.0	37.0	50.0	
	0170	170.0	187.0	280.0	45.0	60.0	
	0205	208.0	225.5	340.0	55.0	75.0	
MR9	0261	261.0	287.1	410.0	75.0	100.0	
	0310	310.0	341.0	502.0	90.0	125.0	

^{* =} см. главу 9.1.3 Перегрузочная способность.

Номинальные токи при данной температуре окружающего воздуха (в главе 9.2 Vacon® 100 FLOW — технические характеристики) достигаются только в случае, если частота коммутации не равна или меньше частоты коммутации, устанавливаемой на заводе-изготовителе (по умолчанию).

Если в системе присутствуют циклические нагрузки, например лифты или лебедки, для получения более подробных сведений о параметрах обратитесь к производителю.

9.1.2 НАПРЯЖЕНИЕ ЭЛЕКТРОСЕТИ 380-500 В

Табл. 39: Номинальные значения мощности привода Vacon® 100 FLOW при напряжении электросети 380–500 В, 50–60 Гц, 3~

	000 000 B, 00					
Типоразмер	Тип привода	Допустимая на	Допустимая нагрузка*			валу
		Непрерывны й ток I∟ [А]	Ток перегрузки 10 % [A]	Макс. ток IS 2 с	Сеть электроснаб жения с напряжение м 400 В	Сеть электроснаб жения с напряжение м 480 В
					Перегрузка 10 % при 40 ℃ [кВт]	Перегрузка 10 % при 40 ℃ [л. с.]
MR4	0003	3.4	3.7	5.2	1.1	1.5
	0004	4.6	5.3	6.8	1.5	2.0
	0005	5.4	6.2	8.6	2.2	3.0
	0008	8.1	8.8	11.2	3.0	4.0
	0009	9.3	10.6	16.0	4.0	5.0
	0012	11.3	13.2	19.2	5.5	7.5
MR5	0016	15.4	17.6	24.0	7.5	10.0
	0023	21.3	25.3	32.0	11.0	15.0
	0031	28.4	34.1	46.0	15.0	20.0
MR6	0038	36.7	41.8	62.0	18.5	25.0
	0046	43.6	50.6	76.0	22.0	30.0
	0061	58.2	67.1	92.0	30.0	40.0
MR7	0072	67.5	79.2	122.0	37.0	50.0
	0087	85.3	95.7	144.0	45.0	60.0
	0105	100.6	115.5	174.0	55.0	75.0
MR8	0140	139.4	154.0	210.0	75.0	100.0
	0170	166.5	187.0	280.0	90.0	125.0
	0205	200.0	225.5	340.0	110.0	150.0
MR9	0261	258.0	287.1	410.0	132.0	200.0
	0310	303.0	341.0	502.0	160.0	250.0

^{* =} см. главу 9.1.3 Перегрузочная способность.

Номинальные токи при данной температуре окружающего воздуха (в главе 9.2 Vacon® 100 FLOW — технические характеристики) достигаются только в случае, если частота коммутации не равна или меньше частоты коммутации, устанавливаемой на заводе-изготовителе (по умолчанию).

Если в системе присутствуют циклические нагрузки, например лифты или лебедки, для получения более подробных сведений о параметрах обратитесь к производителю.

9.1.3 ПЕРЕГРУЗОЧНАЯ СПОСОБНОСТЬ

Низкая перегрузка означает, что если требуется постоянный ток на уровне 110 % (I_L) в течение 1 минуты на протяжении каждых 10 минут, то остальные 9 минут его значение должно составлять примерно 98 % от I_L или ниже. Благодаря этому выходной ток не будет превышать I_L на протяжении рабочего цикла.

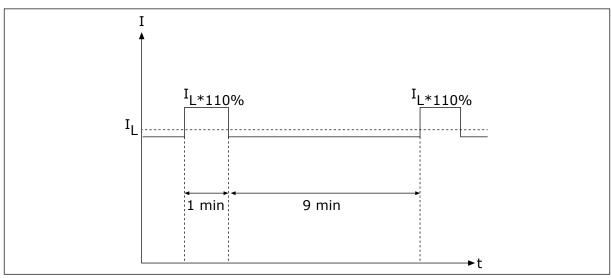


Рис. 36: Низкая перегрузка в Vacon® 100 FLOW

Более подробные сведения см. в стандарте IEC61800-2 (IEC:1998).

9.2 VACON® 100 FLOW — ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Табл. 40: Технические характеристики преобразователя частоты Vacon® 100 FLOW

Технический параметр ил	и функция	Технические характеристики
	Входное напряжение U _в	208–240 В, 380–500 В, от -10 до +10 %
	Входная частота	50-60 Гц, от -5 до +10 %
	Подключение к сети электроснабжения	Один раз в минуту или реже
Подключение к сети электроснабжения	Задержка пуска	6 c (MR4-MR6); 8 c (MR7-MR9)
	Сеть электроснабжения	 Типы сетей электроснабжения: TN, TT и IT Ток короткого замыкания: Максимальный ток короткого замыкания не должен превышать 100 кА.
	Выходное напряжение	0-Ив
Подключение двигателя	Длительный выходной ток	IL: Температура окружающего воздуха: не более +40 °C, перегрузочная способность: 1.1 х IL (1 мин/10 мин)
	Выходная частота	0–320 Гц (стандартная)
	Разрешение по частоте	0,01 Гц
Характеристики управле- ния	Частота переключения (см. параметр РЗ.1.2.3)	МR4-MR6: 1,5-10 кГц Значения по умолчанию • MR4-MR6: 6 кГц (исключения: 0012 2, 0031 2, 0062 2, 0012 5, 0031 5 и 0061 5 – 4 кГц) МR7-MR9: 1,5-6 кГц Значения по умолчанию • MR7: 4 кГц • MR8: 3 кГц • MR9: 2 кГц При перегрузке номинальная частота автоматического переключения снижается.
	Задание частоты Аналоговый вход Задание с панели упра- вления	Разрешение 0,1 % (10 бит), погрешность ±1 % Разрешение 0,01 Гц
	Точка ослабления поля	8–320 Гц
	Время разгона	0,1-3000 c
	Время торможения	0,1-3000 c

Табл. 40: Технические характеристики преобразователя частоты Vacon® 100 FLOW

Технический параметр	или функция	Технические характеристики	
	Рабочая температура окружающего воздуха	IL ток: от -10 °C (без инея) до +40 °C До 50 °C со снижением номинальных характеристик (1,5%/1°C)	
	Температура хранения	От -40 °C до +70 °C	
	Относительная влаж- ность	0–95 % RH, без конденсации, без коррозии	
Условия окружающей среды	Качество воздуха: химические пары твердые частицы	Проведены испытания в соответствии с тестом Ке стандарта IEC 60068-2-60: Испытание на коррозию при воздействии потока газовой смеси, метод 1 (На [сероводород] и SO2 [диоксид сульфида]) Конструкция соответствует следующим требованиям: • IEC 60721-3-3, устройство в работе, класс 3C3 (IP21/UL Туре 1 модели 3C2) • IEC 60721-3-3, устройство в процессе эксплуатации, класс 3S2.	
	Высота над уровнем моря	100% нагрузочная способность (без снижения номинальных параметров) до 1000 м Снижение номинальных параметров на 1 % на каждые 100 м выше 1000 м Макс. высота: • 208-240 В: 4000 м (системы ТN и IT) • 380-500 В: 4000 м (системы ТN и IT) Напряжение релейных выходов: • До 3000 м: Допускается до 240 В • 3000-4000 м: Допускается до 120 В Заземление фазы: только не выше 2000 м (см. главу 5.7 Монтаж в сети электроснабжения с заземлением фазы)	

Табл. 40: Технические характеристики преобразователя частоты Vacon® 100 FLOW

Технический параметр ил	пи функция	Технические характеристики
	Вибрация EN61800-5-1/ EN60068-2-6	5–150 Гц Амплитуда перемещения 1 мм (амплитуда) в диапа- зоне 5–15,8 Гц (MR4–MR9) Макс. амплитуда ускорения 1 G в диапазоне 15,8– 150 Гц (MR4–MR9)
Условия окружающей среды	Ударное воздей- ствие EN60068-2-27	Испытание на падение ИБП (для ИБП соответствующего веса) Хранение и транспортировка: макс. 15 g, 11 мс (в упаковке)
	Степень защиты корпуса	IP21/Type 1: по всему диапазону мощности в кВт/л. с. IP54/Type 12: дополнительно
		ПРИМЕЧАНИЕ! Для устройств IP54/Type 12 требуется адаптер панели управления.
0407	Помехоустойчивость	Удовлетворяет стандарту EN61800-3 (2004), первые и вторые условия эксплуатации.
ЭМС (при установках по умолчанию)	Излучение помех	+EMC2: EN61800-3 (2004), категория C2. Привод можно модифицировать для сетей электроснабжения IT. См. главу 7.5 Монтаж в системе типа IT.
	Средний уровень шума (мин/макс), уровень зву-ковой мощности, дБ(А)	Звуковое давление зависит от скорости вентилятора охлаждения, который регулируется в соответствии с температурой привода.
Уровень шума		MR4: 45-56 MR5: 53-65 MR6: 62-72 MR7: 43-73 MR8: 58-73 MR9: 54-75
Стандарты и сертифи- каты безопасности		EN 61800-5-1 (2007), СЕ (более детальные сведения по соответствию стандартам приведены в паспортной табличке привода).

Табл. 40: Технические характеристики преобразователя частоты Vacon® 100 FLOW

Технический параметр ил	и функция	Технические характеристики
	Порог отключения при повышенном напряже- нии	Приводы с напряжением питания 240 В: 456 В пост. тока Приводы с напряжением питания 500 В: 911 Вольт постоянного тока
	Порог отключения при пониженном напряжении	Зависит от напряжения электросети (напряжение электросети х 0,8775):
		Напряжение электросети 240 В: порог отключения 211 В пост. тока Напряжение электросети 400 В: порог отключения 351 В пост. тока Напряжение электросети 500 В: порог отключения 421 В пост. тока
	Защита от замыкания на землю	Да
элементы защиты	Контроль сети электрос- набжения	Да
элементы защиты	Контроль фаз двигателя	Да
	Защита от перегрузки по току	Да
	Защита от перегрева инвертора	Да
	Защита от перегрузки двигателя	Да * Защита от перегрузки двигателя активируется при 110 % от тока полной нагрузки.
	Защита от опрокидыва- ния двигателя	Да
	Защита от недогрузки двигателя	Да
	Защита от короткого замыкания источников напряжения +24 В и опорного напряжения +10 В	Да

^{* =} для соответствия функций термопамяти и удержания памяти двигателя требованиям UL 61800-5-1 необходимо использовать в системе программное обеспечение версии FW0072V007 (или выше). При использовании программного обеспечения более старой версии необходимо, чтобы при установке защита двигателя от перегрева отвечала требованиям UL.

10 TEXHUYECKUE XAPAKTEPUCTUKU VACON® 100 HVAC

10.1 НОМИНАЛЬНЫЕ ЗНАЧЕНИЯ МОЩНОСТИ ПРИВОДА ПЕРЕМЕННОГО ТОКА

10.1.1 НАПРЯЖЕНИЕ ЭЛЕКТРОСЕТИ 208-240 В

Табл. 41: Номинальные значения мощности привода Vacon® 100 HVAC при напряжении электросети 208–240 В, 50–60 Гц, 3~

Типоразмер	Тип привода	Допустимая нагрузка			Мощность на валу двигателя	
		Низк.*		Сеть электроснаб жения с напряжение м 230 В	Сеть электроснаб жения с напряжение м 208–240 В	
		Непрерывны й ток I∟ [А]	Входной ток Ів [A]	Ток перегрузки 10 % [A]	Перегрузка 10 % при 40 ℃ [кВт]	Перегрузка 10 % при 40 ℃ [л. с.]
MR4	0003	3.7	3.2	4.1	0.55	0.75
	0004	4.8	4.2	5.3	0.75	1.0
	0006	6.6	6.0	7.3	1.1	1.5
	0008	8.0	7.2	8.8	1.5	2.0
	0011	11.0	9.7	12.1	2.2	3.0
	0012	12.5	10.9	13.8	3.0	4.0
MR5	0018	18.0	16.1	19.8	4.0	5.0
	0024	24.2	21.7	26.4	5.5	7.5
	0031	31.0	27.7	34.1	7.5	10.0
MR6	0048	48.0	43.8	52.8	11.0	15.0
	0062	62.0	57.0	68.2	15.0	20.0
MR7	0075	75.0	69.0	82.5	18.5	25.0
	0088	88.0	82.1	96.8	22.0	30.0
	0105	105.0	99.0	115.5	30.0	40.0

Табл. 41: Номинальные значения мощности привода Vacon® 100 HVAC при напряжении электросети 208−240 В, 50−60 Гц, 3~

Типоразмер Тип привода		Допустимая нагрузка			Мощность на валу двигателя	
		Низк.*		Сеть электроснаб жения с напряжение м 230 В	Сеть электроснаб жения с напряжение м 208–240 В	
		Непрерывны й ток I∟ [A]	Входной ток Ів [A]	Ток перегрузки 10 % [A]	Перегрузка 10 % при 40 ℃ [кВт]	Перегрузка 10 % при 40 ℃ [л. с.]
MR8	0140	143.0	135.1	154.0	37.0	50.0
	0170	170.0	162.0	187.0	45.0	60.0
	0205	208.0	200.0	225.5	55.0	75.0
MR9	0261	261.0	253.0	287.1	75.0	100.0
	0310	310.0	301.0	341.0	90.0	125.0

^{*}См. 10.1.3 Перегрузочная способность.

Номинальные токи при данной температуре окружающего воздуха (в главе 10.2 Vacon® 100 HVAC — технические характеристики) достигаются только в случае, если частота коммутации не равна или меньше частоты коммутации, устанавливаемой на заводе-изготовителе (по умолчанию).

10.1.2 НАПРЯЖЕНИЕ ЭЛЕКТРОСЕТИ 380-500 В

Табл. 42: Номинальные значения мощности привода Vacon® 100 HVAC при напряжении электросети 380–500 В, 50–60 Гц, 3~

Типоразмер	Тип привода	Допустимая нагрузка			Мощность на валу двигателя	
		Низк.*			Сеть электроснаб жения с напряжение м 400 В	Сеть электроснаб жения с напряжение м 480 В
		Непрерывны й ток I∟ [А]	Входной ток Ів [А]	Ток перегрузки 10 % [A]	Перегрузка 10 % при 40 ℃ [кВт]	Перегрузка 10 % при 40 ℃ [л. с.]
MR4	0003	3.4	3.4	3.7	1.1	1.5
	0004	4.8	4.6	5.3	1.5	2.0
	0005	5.6	5.4	6.2	2.2	3.0
	0008	8.0	8.1	8.8	3.0	5.0
	0009	9.6	9.3	10.6	4.0	5.0
	0012	12.0	11.3	13.2	5.5	7.5
MR5	0016	16.0	15.4	17.6	7.5	10.0
	0023	23.0	21.3	25.3	11.0	15.0
	0031	31.0	28.4	34.1	15.0	20.0
MR6	0038	38.0	36.7	41.8	18.5	25.0
	0046	46.0	43.6	50.6	22.0	30.0
	0061	61.0	58.2	67.1	30.0	40.0
MR7	0072	72.0	67.5	79.2	37.0	50.0
	0087	87.0	85.3	95.7	45.0	60.0
	0105	105.0	100.6	115.5	55.0	75.0
MR8	0140	140.0	139.4	154.0	75.0	100.0
	0170	170.0	166.5	187.0	90.0	125.0
	0205	205.0	199.6	225.5	110.0	150.0
MR9	0261	261.0	258.0	287.1	132.0	200.0
	0310	310.0	303.0	341.0	160.0	250.0

См. 10.1.3 Перегрузочная способность.

Номинальные токи при данной температуре окружающего воздуха (в главе 10.2 Vacon® 100 HVAC — технические характеристики) достигаются только в случае, если частота коммутации не равна или меньше частоты коммутации, устанавливаемой на заводе-изготовителе (по умолчанию).

10.1.3 ПЕРЕГРУЗОЧНАЯ СПОСОБНОСТЬ

Низкая перегрузка означает, что если требуется постоянный ток на уровне 110 % (I_L) в течение 1 минуты на протяжении каждых 10 минут, то остальные 9 минут его значение должно составлять примерно 98 % от I_L или ниже. Благодаря этому выходной ток не будет превышать I_L на протяжении рабочего цикла.

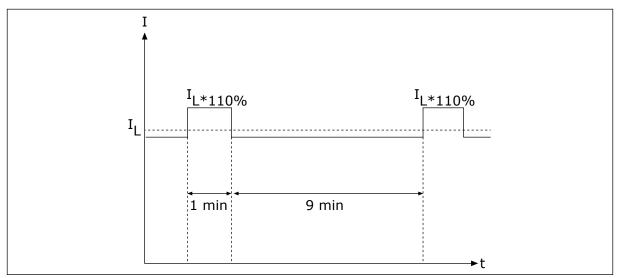


Рис. 37: Низкая перегрузка в Vacon® 100 HVAC

Более подробные сведения см. в стандарте IEC61800-2 (IEC:1998).

10.2 VACON® 100 HVAC — ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Табл. 43: Технические характеристики преобразователя частоты Vacon® 100 HVAC

Технический параметр ил	и функция	Технические характеристики
	Входное напряжение U _в	208-240 В, 380-500 В, от -10 до +10 %
	Входная частота	50-60 Гц, от -5 до +10 %
	Подключение к сети электроснабжения	Один раз в минуту или реже
Подключение к сети электроснабжения	Задержка пуска	6 c (MR4-MR6); 8 c (MR7-MR9)
	Сеть электроснабжения	 Типы сетей электроснабжения: TN, TT и IT Ток короткого замыкания: Максимальный ток короткого замыкания не должен превышать 100 кА.
	Выходное напряжение	0-Ив
Подключение двигателя	Длительный выходной ток	IL: Температура окружающего воздуха: не более +40 °C, перегрузочная способность: 1.1 х IL (1 мин/10 мин)
	Выходная частота	0–320 Гц (стандартная)
	Разрешение по частоте	0,01 Гц
Характеристики управле- ния	Частота переключения (см. параметр РЗ.1.2.3)	МR4-MR6: 1,5-10 кГц Значения по умолчанию • MR4-MR6: 6 кГц (исключения: 0012 2, 0031 2, 0062 2, 0012 4, 0031 4 и 0061 4 – 4 кГц) МR7-MR9: 1,5-6 кГц Значения по умолчанию • MR7: 4 кГц • MR8: 3 кГц • MR9: 2 кГц При перегрузке номинальная частота автоматического переключения снижается.
	Задание частоты Аналоговый вход Задание с панели упра- вления	Разрешение 0,1 % (10 бит), погрешность ±1 % Разрешение 0,01 Гц
	Точка ослабления поля	8–320 Гц
	Время разгона	0,1-3000 c
	Время торможения	0,1-3000 c

Табл. 43: Технические характеристики преобразователя частоты Vacon® 100 HVAC

Технический параметр или функция		Технические характеристики
	Рабочая температура окружающего воздуха	IL ток: от -10 °C (без инея) до +40 °C До 50 °C со снижением номинальных характеристик [1,5%/1°C]
	Температура хранения	От -40 °C до +70 °C
	Относительная влаж- ность	0-95 % RH, без конденсации, без коррозии
Условия окружающей среды	Качество воздуха: химические пары твердые частицы	Проведены испытания в соответствии с тестом Ке стандарта IEC 60068-2-60: Испытание на коррозию при воздействии потока газовой смеси, метод 1 (H2S [сероводород] и SO2 [диоксид сульфида]) Конструкция соответствует следующим требованиям: • IEC 60721-3-3, устройство в процессе эксплуатации, класс 3C2 • IEC 60721-3-3, устройство в процессе эксплуатации, класс 3S2.
	Высота над уровнем моря	100% нагрузочная способность (без снижения номинальных параметров) до 1000 м Снижение номинальных параметров на 1 % на каждые 100 м выше 1000 м Макс. высота: • 208-240 В: 4000 м (системы ТN и IT) • 380-500 В: 4000 м (системы TN и IT) Напряжение релейных выходов: • До 3000 м: Допускается до 240 В • 3000-4000 м: Допускается до 120 В Заземление фазы: до 2000 м только

Табл. 43: Технические характеристики преобразователя частоты Vacon® 100 HVAC

Технический параметр ил	ти функция	Технические характеристики
	Вибрация EN61800-5-1/ EN60068-2-6	5–150 Гц Амплитуда перемещения 1 мм (амплитуда) в диапа- зоне 5–15,8 Гц (MR4–MR9) Макс. амплитуда ускорения 1 G в диапазоне 15,8– 150 Гц (MR4–MR9)
Условия окружающей среды	Ударное воздей- ствие EN60068-2-27	Испытание на падение ИБП (для ИБП соответствую- щего веса) Хранение и транспортировка: макс. 15 g, 11 мс (в упаковке)
	Степень защиты корпуса	IP21/Type 1: по всему диапазону мощности в кВт/л. с. IP54/Type 12: дополнительно
		ПРИМЕЧАНИЕ! Для устройств IP54/Type 12 требуется адаптер панели управления.
0140 (Помехоустойчивость	Удовлетворяет стандарту EN61800-3 (2004), первые и вторые условия эксплуатации.
ЭМС (при установках по умолчанию)	Излучение помех	+EMC2: EN61800-3 (2004), категория C2. Привод можно модифицировать для сетей электроснабжения IT. См. главу 7.5 Монтаж в системе типа IT.
	Среднее звуковое давление уровня шума (вентилятор охлаждения), дБ(А)	Звуковое давление зависит от скорости вентилятора охлаждения, который регулируется в соответствии с температурой привода.
Уровень шума		MR4: 65 MR5: 70 MR6: 77 MR7: 77 MR8:86 MR9:87
Стандарты и сертифи- каты безопасности		EN 61800-5-1 (2007), CE, cUL; (более детальные сведения по соответствию стандартам приведены в паспортной табличке привода).

Табл. 43: Технические характеристики преобразователя частоты Vacon® 100 HVAC

Технический параметр ил	и функция	Технические характеристики
	Порог отключения при повышенном напряже- нии	Приводы с напряжением питания 240 В: 456 В пост. тока Приводы с напряжением питания 500 В: 911 Вольт постоянного тока
	Порог отключения при пониженном напряжении	Зависит от напряжения электросети (напряжение электросети х 0,8775):
		Напряжение электросети 240 В: порог отключения 211 В пост. тока Напряжение электросети 400 В: порог отключения 351 В пост. тока Напряжение электросети 480 В: порог отключения 421 В пост. тока
	Защита от замыкания на землю	Да
элементы защиты	Контроль сети электрос- набжения	Да
элементы защиты	Контроль фаз двигателя	Да
	Защита от перегрузки по току	Да
	Защита от перегрева инвертора	Да
	Защита от перегрузки двигателя	Да * Защита от перегрузки двигателя активируется при 110 % от тока полной нагрузки.
	Защита от опрокидыва- ния двигателя	Да
	Защита от недогрузки двигателя	Да
	Защита от короткого замыкания источников напряжения +24 В и опорного напряжения +10 В	Да

^{* =} для соответствия функций термопамяти и удержания памяти двигателя требованиям UL 61800-5-1 необходимо использовать в системе программное обеспечение версии FW0072V007 (или выше). При использовании программного обеспечения более старой версии необходимо, чтобы при установке защита двигателя от перегрева отвечала требованиям UL.

11 ТЕХНИЧЕСКИЕ ДАННЫЕ ЦЕПЕЙ УПРАВЛЕНИЯ

11.1 ТЕХНИЧЕСКИЕ ДАННЫЕ ЦЕПЕЙ УПРАВЛЕНИЯ

Табл. 44: Стандартная плата ввода/вывода

Стандартная	Стандартная плата ввода/вывода			
Клемма	Сигнал	Техническая информация		
1	Выход опорного сигнала	+10 В, +3 %, макс. ток: 10 мА		
2	Аналоговый вход, напряжение или ток	Канал аналогового входа 1 0-10 B, (Ri = 200 кОм) 4-20 мА (Ri = 250 Ом) Разрешение 0,1 %, погрешность ±1 % Выбор напряжение/ток (В/мА) с помощью DIP-переключа- телей (см. главу 6.2.2.1 Выбор функций клемм с помощью DIP-переключателей) Защита от короткого замыкания		
3	Общий аналоговый вход (ток)	Дифференциальный вход, если не подключен к земле Допустимый сигнал при включении в общем режиме ±20 В по отношению к земле		
4	Аналоговый вход, напряжение или ток	Канал аналогового входа 2 По умолчанию: 4–20 мА (Ri = 250 Ом) 0–10 В (Ri = 200 кОм) Разрешение 0,1 %, погрешность ±1 % Выбор напряжение/ток (В/мА) с помощью DIP-переключателей (см. главу 6.2.2.1 Выбор функций клемм с помощью DIP-переключателей) Защита от короткого замыкания		
5	Общий аналоговый вход (ток)	Дифференциальный вход, если не подключен к земле Допустимый сигнал при включении в общем режиме ±20 В по отношению к земле		
6	24 В вспом. напряжения	+24 B, ±10 %, макс. напряжение пульсаций < 100 мВ действ. знач. макс. 250 мА Защита от короткого замыкания		
7	Земля входов/выходов	Земля для источников опорного сигнала и сигналов управления (подсоединена внутри к земле корпуса через 1 МОм)		

Табл. 44: Стандартная плата ввода/вывода

Клемма	Сигнал	Техническая информация	
8	Цифровой вход 1		
9	Цифровой вход 2	Положительная или отрицательная логика Ri = мин. 5 кОм	
10	Цифровой вход 3	0-5 B = 0 15-30 B = 1	
11	Общая клемма А для входов ДВХ1-ДВХ6	Цифровые входы могут быть отсоединены от земли, см. главу 6.2.2.1 Выбор функций клемм с помощью DIP-переключателей.	
12	24 В вспом. напряжения	+24 B, ±10 %, макс. напряжение пульсаций < 100 мВ дейст знач. макс. 250 мА Защита от короткого замыкания	
13	Земля входов/выходов	Земля для источников опорного сигнала и сигналов управления (подсоединена внутри к земле корпуса через 1 МОм)	
14	Цифровой вход 4		
15	Цифровой вход 5	Положительная или отрицательная логика Ri = мин. 5 кОм	
16	Цифровой вход 6	0-5 B = 0 15-30 B = 1	
17	Общая клемма А для входов ДВХ1-ДВХ6	Цифровые входы можно изолировать от земли, см. главу 6.2.2.1 Выбор функций клемм с помощью DIP-переключателе	
18	Аналоговый сигнал (выход+)		
19	Аналоговый выход, общий	Канал аналогового выхода 1, выбор 0-20 мА, нагрузка <50 Ом По умолчанию: 0-20 мА 0-10 В Разрешение 0,1 %, погрешность ±2 % Выбор напряжение/ток (В/мА) с помощью DIP-переключа телей (см. главу 6.2.2.1 Выбор функций клемм с помощью DIP-переключателей) Защита от короткого замыкания	
30	Вспомогательное входное напряжение 24 В	Может служить внешним резервным источником питания для блока управления.	
Α	RS485		
В	RS485	Прием/передача дифференциального сигнала Установка окончания шины с помощью DIP-перекли лей (см. главу 6.2.2.1 Выбор функций клемм с помощь переключателей). Сопротивление согласования = 22	

Табл. 45: Стандартная релейная плата (+SBF3)

Клемма	Сигнал	Техническая информация
21		(
22		Реле с переключающими контактами (SPDT). Изоляция между каналами: 5,5 мм.
23	Релейный выход 1*	Коммутационная способность • 24 В пост. тока/8 А • 250 В перем. тока/8 А • 125 В пост. тока/0,4 А Мин. коммутируемая нагрузка: • 5 В/10 мА
24		(CDDT) IA
25		Реле с переключающими контактами (SPDT). Изоляция между каналами: 5,5 мм.
26	Релейный выход 2*	Коммутационная способность • 24 В пост. тока/8 А • 250 В перем. тока/8 А • 125 В пост. тока/0,4 А Мин. коммутируемая нагрузка: • 5 В/10 мА
32		, (UE 000T)
33	Релейный выход 3*	Нормально-разомкнутый (НР или SPST) контакт реле. Изоляция между каналами: 5,5 мм. Коммутационная способность

^{*} Если в качестве управляющего напряжения, снимаемого с выходных реле, используется 230 В перем. тока, питание на цепи управления должно подаваться от отдельного изолированного трансформатора, что позволяет ограничить ток короткого замыкания и импульсы перенапряжения. Это предотвращает «спекание» контактов реле. Обратитесь к стандарту EN 60204-1, раздел 7.2.9.

Табл. 46: Дополнительная релейная плата (+SBF4)

Клемма	Сигнал	Техническая информация		
21		()		
22		Реле с переключающими контактами (SPDT). Изоляция между каналами: 5,5 мм. Коммутационная способность • 24 В пост. тока/8 А • 250 В перем. тока/8 А • 125 В пост. тока/0,4 А Мин. коммутируемая нагрузка: • 5 В/10 мА		
23	Релейный выход 1*			
24		(CDDT) 14		
25		Реле с переключающими контактами (SPDT). Изоляция между каналами: 5,5 мм. Коммутационная способность • 24 В пост. тока/8 А • 250 В перем. тока/8 А • 125 В пост. тока/0,4 А Мин. коммутируемая нагрузка: • 5 В/10 мА		
26	Релейный выход 2*			
28				
29	TI1+ TI1-	Вход термистора Rtrip = 4.7 кОм (РТС) Измерительное напряжение 3,5 В		

^{*} Если в качестве управляющего напряжения, снимаемого с выходных реле, используется 230 В перем. тока, питание на цепи управления должно подаваться от отдельного изолированного трансформатора, что позволяет ограничить ток короткого замыкания и импульсы перенапряжения. Это предотвращает «спекание» контактов реле. Обратитесь к стандарту EN 60204-1, раздел 7.2.9.

VACON® DRIVEN BY DRIVES

Find your nearest Vacon office on the Internet at:

www.vacon.com

Manual authoring: documentation@vacon.com

Vacon Plc. Runsorintie 7 65380 Vaasa Finland

Subject to change without prior notice © 2015 Vacon Plc.

Rev. E1

Sales code: DOC-INS100WM+DLRU