Задать вопрос

или свяжитесь с нами по телефону +7 (495) 792-57-57

* - обязательные поля

Силовая электроника
+7 (495) 792-57-57

Транзисторы IGBT

Получить консультацию

Полупроводниковый ключ – один из самых важных элементов силовой электроники. На их базе строятся практически все бестрансформаторные преобразователи тока и напряжения, инверторы, частотные преобразователи.

Полупроводниковый ключ – один из самых важных элементов силовой электроники. На их базе строятся практически все бестрансформаторные преобразователи тока и напряжения, инверторы, частотные преобразователи.

Модуль IGBT

Применение электронных ключей позволяет упростить схему преобразователей, значительно уменьшить габариты устройств, улучшить технические характеристики.

Основные характеристики полупроводниковых коммутаторов:

  • Ток или напряжение управления.
  • Номинальное напряжение и ток силового канала.
  • Сопротивление канала.
  • Допустимая частота переключений.
  • Статические и динамические потери.

В схемах преобразователей используют двухоперационные тиристоры с управляющими электродами (GTO и IGCT), силовые биполярные (БП) и полевые транзисторы (MOSFET), биполярные транзисторы с изолированным затвором (IGBT).

Первые силовые электронные устройства были выполнены на базе тиристоров и биполярных транзисторов. Первые при всех своих достоинствах не могут обеспечить необходимое быстродействие, управляемые тиристоры используют в среднечастотной области.

Применение биполярных транзисторов существенно ограничивает невысокий коэффициент передачи тока, значительный температурный разброс этого параметра, управление знакопеременным напряжением, невысокая плотность тока силовой цепи.

В схемы с биполярными транзисторами приходится включать дополнительные цепи, обеспечивающие управление и защиту полупроводниковых элементов. Это существенно увеличивает стоимость преобразователей и усложняет их производство.

Основные полупроводниковые элементы силовой электроники сейчас – полевые транзисторы (MOSFET), биполярные транзисторы с изолированным затвором (IGBT).

MOSFET-транзисторы применяются в основном в высокочастотных низковольтных преобразователях, область применения IGBT – мощные высоковольтные схемы.

Конструкция и принцип работы силовых транзисторов

IGBT (Insulated Gate Bipolar Transistor) или биполярный силовой транзистор с изолированным затвором – элемент из двух транзисторов в общей полупроводниковой структуре, устроенный по каскадной схеме. Биполярный транзистор образует силовой канал, полевой – канал управления. Объединение полупроводниковых элементов реализовано структурой элементных ячеек в одном кристалле.

Упрощенная эквивалентная схема биполярных транзисторов с изолированным затвором представлена на рисунке:

схема

IGBT – приборы появились после того, как были выявлены недостатки MOSFET транзисторов в высоковольтных схемах: квадратичная зависимость сопротивления канала от напряжения.

Полупроводниковые приборы IGBT сочетают достоинства силовых биполярных и полевых транзисторов с изолированным затвором:

  • Небольшая мощность управления.
  • Высокая скорость переключения.
  • Маленькие потери при открытом транзисторе.
  • Высокое номинальное напряжение силового канала.

Сопротивление канала IGBT-элементов растет пропорционально току, зависимость потерь от величины тока не квадратичная, как у транзисторов MOSFET. Быстродействие силовых элементов с изолированным затвором превосходит скорость коммутации биполярных транзисторов, но уступает элементам MOSFET.

Сопротивление канала IGBT-элементов

Структура IGBT представлена на рисунке. В области стока нанесен еще один дополнительный p+-слой, который образует биполярный транзистор.

При закрытом ключе, напряжение приложено к n–-слою. При подаче на изолированный затвор управляющего напряжения, область р образует открытый канал, включая полевой транзистор, который в свою очередь отпирает биполярный p-n-p элемент. Между внешним коллектором и эмиттером начинает протекать ток. При этом ток стока полевой ячейки усиливается. При открытой биполярной ячейке, остаточное напряжение в n–-области падает еще благодаря потокам электронов и дырок.

Напряжение на включенном транзисторе определяется из выражения:

Напряжение на включенном транзисторе

Где Uбэ – напряжение база-эмиттер открытого ключа, Rпол – сопротивление полевой ячейки, Iб – ток базы, Iк – ток коллектора, B – коэффициент передачи тока биполярной ячейки. Для снижения падения напряжения на открытых IGBT приборах применяют вертикальные затворы. Площадь ячейки транзистора уменьшают в 2-5 раз.

Падение напряжения на открытом IGBT зависит от температуры гораздо меньше аналогичного параметра MOSFET-транзисторов. На рисунке приведен график падения напряжения в функции температуры для 2 IGBT транзисторов и одного полевого прибора.

Как и биполярные транзисторы, IGBT способны накапливать заряд, который является причиной остаточного тока и нагрева прибора при запирании. Между электродами и переходами полевой и биполярной элементной ячейки образуются паразитные емкости. Время рассасывания заряда для IGBT прибора составляет всего 0,2-1,5 мкс, при коммутации с частотой 10-20 кГц для надежной работы транзисторов не нужно включать в схему дополнительные цепи.

Потери в транзисторах

Различают 3 типа потерь мощности на транзисторах: статические, динамические, в цепи управления.

Первые обусловлены токами утечки в запертом состоянии, сопротивлением полупроводникового кристалла. Статические потери рассчитывают по формуле:

где U(0) – падение напряжения, Iср и Irms – средний и среднеквадратичный ток соответственно.

Динамические потери возникают при открывании и запирании транзистора. Они определяются по графику и зависят от частоты коммутаций, температуры, напряжения на коллекторе, тока в момент переключения.

Потери в цепи управления полупроводниковым элементом ничтожно малы и при практических расчетах его величиной можно пренебречь.

В области частот 10-20 кГц потери мощности на IGBT-транзисторах малы и не вызывают сильного нагрева, который приводит к тепловому пробою.

Модули IGBT

Для снижения количества внешних элементов выпускают модули на базе IGBT. Они могут содержать дополнительные транзисторы, диоды и другие компоненты.

Модуль на базе IGBT

Такая конструкция облегчает ремонт преобразователей, позволяет наращивать мощность устройств путем установки дополнительных модулей.

Модуль на базе IGBT

Для коммутации больших токов, превышающих допустимое значение для одного транзистора, можно подключать модули параллельно.

Параллельные модули на базе IGBT

В этом случае выбирают транзисторы IGBT с одинаковым пороговым напряжением во включенном состоянии. Разница в параметрах приводит к несимметричному току на транзисторах. При параллельном включении также учитывают увеличившуюся входную емкость, драйвер управления должен обеспечить заданную скорость коммутации.

Выбор модулей IGBT

Транзисторные модули выбирают по нескольким основным характеристикам:

  • Максимальный ток коллектора Iс. Производители обычно приводят 2 значения. Одно при стандартной температуре в помещениях +25°С, второе при +80°С. В руководствах приведен график зависимости тока коллектора от температуры. Для определения промежуточных значений можно воспользоваться им.
  • Напряжение «коллектор-эмиттер». Характеристика определяет класс полупроводникового элемента. При выборе необходимо воспользоваться таблицей класса напряжений IGBT-транзисторов для промышленных сетей.
  • Рабочее максимальное напряжение «коллектор-эмиттер». Для стабильной работы модуля пиковые величины не должны быть больше 80 % номинального значения. Нормальное рабочее напряжение не должно превышать 60% от номинала.
  • Заряд затвора и напряжение насыщения. Характеристики нужны для расчета драйвера и определения потерь при открытом транзисторе.

Для выбора полупроводниковых модулей IGBT для преобразователей рекомендует следующий алгоритм:

  • Определение номинального и максимального напряжения звена постоянного тока.
  • Выбор типа модуля по классификационному напряжению.
Классы напряжения IGBT для электросетей
Напряжение сети, В 220 380 660
Напряжение IGBT, В 600 1200 1700
 
  • Определение предельного тока на выходе преобразователя.
  • Выбор максимальной частоты переключений для предельного выходного тока.
  • Выбор модуля IGBT с номинальным током не меньше предельного значения на выходе преобразователя.
  • Расчет статических и динамических потерь в каждом элементе модуля при максимально допустимой температуре IGBT.
  • Расчет предельной температуры радиатора в зоне установки модуля.
  • Вычисление общих потерь на модуль.

Значение температуры выбирают с запасом. При превышении расчетного значения допустимой величины, необходим выбор модуля с большим номинальным током. При большом запасе выбирают IGBT с меньшим номинальным током и заново выполняют расчеты.

Управление модулями IGBT

Модули IGBT управляются драйверами. Микросхемы вырабатывают управляющие импульсы, обеспечивают коммутацию ключей в нужном частотном диапазоне, согласовывают работу полупроводниковых устройств с блоком управления.

При выборе драйверов для модулей, производители рекомендуют руководствоваться следующими рекомендациями:

Напряжение цепи «коллектор-эмиттер» для снижения динамических потерь и обеспечения стабильной работы транзистора при отпирании ключа должно составлять +15±10% В, при запирании -7…-15 В. Максимальная величина – не более ±20 В.

Длительность импульсов напряжения выхода драйвера должна быть меньше времени коммутации транзисторов в 5-10 раз.

Внутреннее сопротивление драйвера управления должно выбираться в пределах диапазона конкретного модуля с учетом динамических потерь. Это необходимо для исключения перенапряжений, вызванных перезарядкой внутренних индуктивностей.

Напряжение запирания должно обеспечивать гарантированное отключение IGBT при любых условиях.

Для уменьшения помех необходимо подключать драйвер к модулю витой парой или устанавливать плату на контакты управления модулем.

Схема электропитания организовывается следующим образом: вначале напряжение подается на драйвер, затем на модуль.

Для предотвращения эффекта «защелкивания» паразитной p-n-p-n структуры, образуемой модулем и выходным каскадом микросхемы управления, исток биполярной ячейки, общий выход драйвера и отрицательную клемму сглаживающего фильтра присоединяют на общую шину.

Защита и охлаждение IGBT

Для ограничения перенапряжений при переключении транзисторов используют RC- и RCD-фильтры, включаемые в силовую цепь.

Для снижения больших перенапряжений при переключениях используют настройки драйвера: напряжение на выходе управляющего устройства должно снижаться меньше, чем в обычных условиях работы модуля и выключение электронных ключей в 2 этапа. На первом в цепь затвор-эмиттер включается резистор, затем, при достижении номинального значения тока коллектора, модуль резко отключается.

Для снижения выравнивающих токов в цепи эмиттера ставят резистор номиналом до 0,1 от эквивалентного сопротивления транзистора.

При большой разнице в задержке переключения, применяют индуктивности для равномерного распределения тока в транзисторах. Их параметры рассчитывают по формуле:

Где U – напряжение на шине, ∆I – отклонение от среднего значения тока, Dt – разность времени переключения.

Для борьбы с токами короткого замыкания в цепь «затвор – эмиттер» включают защиту.

Это предотвратит увеличение напряжения при резком скачке тока и выход полупроводникового устройства из режима насыщения.

При транспортировке, монтаже и эксплуатации IGBT должна учитываться чувствительность модулей к статическим зарядам. Для исключения пробоя электростатическим напряжением в цепь «затвор-эмиттер» включают сопротивление на 10-20 кОм. При транспортировке и хранении выводы затвора и эмиттера заворачивают перемычками, которые не снимают до монтажа. Работы по установке необходимо проводить в антистатических браслетах. Инструменты и измерительные приборы также необходимо заземлить.

При разработке преобразователей на базе IGBT модулей требуется предусмотреть эффективное охлаждение. Для теплового расчета применяется эквивалентная схема устройства:

Расчет осуществляется по формуле:

где РП – мощность потерь полупроводникового прибора, Rt h( р ) – тепловое сопротивление проводящего материала.

Монтаж модулей IGBT

Для эффективного охлаждения полупроводниковых модулей необходимо подготовить поверхность радиатора и обеспечить плотное прилегание подложки прибора к охладителю. Шероховатость поверхностей должна быть не более 10 мкм, отклонение от параллельности –меньше 20 мкм на расстоянии до 10 см.

Перед монтажом нужно убедиться, что на поверхностях нет твердых частиц, а также обезжирить подложку и радиатор любым неагрессивным к материалам компонентов растворителем.

Для установки модуля нужно обязательно применять термопасту без твердых включений. Характеристики материала должны сохраняться при любой температуре эксплуатации на протяжении всего срока службы. Рекомендованный запас по температуре – 10%. Перед нанесением пасты контактные поверхности охладителя и подложки обезжиривают безворсовой тканью, смоченной в растворителе. Толщину слоя пасты регулируют специальным гребешком. При нанесении теплопроводящего материала избегают его попадания на радиатор и в гнезда для резьбовых соединений.

Крепление силовых моделей осуществляют в следующем порядке:

  • Фиксируют корпус двумя диагональными болтами.
  • Наносят теплопроводящий материал.
  • Затягивают болты по диагонали (рекомендованное усилие 0.5 Нм ± 15%).
  • Выдерживают полчаса для заполнения пустот теплопроводящей пастой.
  • Затягивают болты с усилием 3-5 Нм.

Для затяжки применяют электронные инструменты с небольшой частотой вращения и функцией контроля усилий. Применять пневматику нельзя, такой инструмент недостаточно точен и может создать избыточное усилие затяжки, которое приводит к напряжениям на корпусе прибора и трещинам полупроводникового кристалла.

При монтаже запрещается изгибать силовые и управляющие контакты, подвергать корпус прибора ударам, прикладывать избыточные усилия затяжки.

 Заключение

Силовые биполярные транзисторы с изолированным затвором обладают:

  • Высоким входным сопротивлением.
  • Низким остаточным напряжением в открытом состоянии.
  • Малыми потерями при высоких токах и напряжениях.

Полупроводниковые устройства могут применяться при напряжении 10 кВ и коммутации токов до 1200 А. На базе IGBT производят частотные преобразователи для электроприводов, бестрансформаторные конверторы и инверторы, сварочное оборудование, регуляторы тока для мощных приводов.

Модуль IGBT

В области частот 10-20 кГц ключи на транзисторах GBT значительно превосходят устройства на полупроводниковых приборах других типов.